浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1599-1608.DOI: 10.3969/j.issn.1004-1524.2022.08.04
王志鹏1(), 赵剑2, 黄盼2, 崔雪梅2, 南黎2, 宋厚辉1, 鲍国连2, 刘燕2,*
收稿日期:
2021-04-03
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
刘燕
作者简介:
*刘燕,E-mail:ly-liuyan@qq.com基金资助:
WANG Zhipeng1(), ZHAO Jian2, HUANG Pan2, CUI Xuemei2, NAN Li2, SONG Houhui1, BAO Guolian2, LIU Yan2,*
Received:
2021-04-03
Online:
2022-08-25
Published:
2022-08-26
Contact:
LIU Yan
摘要:
对浙江省某兔场腹泻病兔进行病原分离鉴定,经革兰氏染色和PCR鉴定,分离出致病性大肠埃希菌1株,命名为ZJE1株。ZJE1株对链霉素、环丙沙星敏感。以ZJE1株为宿主菌,分离纯化出噬菌体4株,分别命名为ZRP2、ZRP3、ZRP4和ZRP5,并对其生物学特性、形态与结构特征进行研究。结果显示,4株噬菌体分离株均由六角形的头部、可收缩的尾鞘和尾管组成,均属于肌尾噬菌体科。采用双层平板法测定噬菌体分离株的宿主谱、最佳感染复数、pH稳定性、热稳定性和一步生长曲线。结果显示,ZRP2、ZRP3、ZRP4和ZRP5具有宿主特异性,在37~55 ℃的条件下可保持良好活性。ZRP2、ZRP3在pH值7的条件下可保持良好活性,ZRP4、ZRP5在pH值5~7的条件下可保持良好活性。ZRP2、ZRP3、ZRP5的潜伏期为11~19 min,均能在体外裂解ZJE1株。研究成果可为应用噬菌体治疗兔大肠埃希菌病提供研究基础与数据支持。
中图分类号:
王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608.
WANG Zhipeng, ZHAO Jian, HUANG Pan, CUI Xuemei, NAN Li, SONG Houhui, BAO Guolian, LIU Yan. Isolation, identification and biological characteristics of rabbit-derived Escherichia coli bacteriophage[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1599-1608.
基因 Gene | 片段长度 Length/bp | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|---|
16S rRNA | 584 | GGGATGAAAGTTAATACCTTTGCTC | TTCCCGAAGGCACATTCT |
eaeA | 384 | GACCCGGCACAAGCATAAGC | CCACCTGCAGCAACAAGAGG |
bfpA | 224 | AATGGTGCTTGCGCTTGCTGC | GCCGCTTTATCCAACCTGGTA |
stx | 150 | CTGGATTTAATGTCGCATAGTG | AGAACGCCCACTGAGATCATC |
ipaH | 600 | GTTCCTTGACCGCCTTTCCGATACCGTC | GCCGGTCAGCCACCCTCTGAGAGTAC |
st | 186 | TCTGTATTGTCTTTTTCACC | TTAATAGCACCCGGTACAAGC |
lt | 322 | TCTCTATGTGCATACGGAGC | CCATACTGATTGCCGCAAT |
aatA | 630 | CTGGCGAAAGACTGTATCAT | CAATGTATAGAAATCCGCTGTT |
表1 用于大肠埃希菌鉴定的PCR引物序列
Table 1 Primers used for identification of Escherichia coli
基因 Gene | 片段长度 Length/bp | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|---|
16S rRNA | 584 | GGGATGAAAGTTAATACCTTTGCTC | TTCCCGAAGGCACATTCT |
eaeA | 384 | GACCCGGCACAAGCATAAGC | CCACCTGCAGCAACAAGAGG |
bfpA | 224 | AATGGTGCTTGCGCTTGCTGC | GCCGCTTTATCCAACCTGGTA |
stx | 150 | CTGGATTTAATGTCGCATAGTG | AGAACGCCCACTGAGATCATC |
ipaH | 600 | GTTCCTTGACCGCCTTTCCGATACCGTC | GCCGGTCAGCCACCCTCTGAGAGTAC |
st | 186 | TCTGTATTGTCTTTTTCACC | TTAATAGCACCCGGTACAAGC |
lt | 322 | TCTCTATGTGCATACGGAGC | CCATACTGATTGCCGCAAT |
aatA | 630 | CTGGCGAAAGACTGTATCAT | CAATGTATAGAAATCCGCTGTT |
图2 大肠埃希菌分离菌株的PCR鉴定结果 M,DL5000 DNA分子量标准;1,16S rRNA基因的V3~V6区;2,stx基因;3,ipaH基因;4,bfpA基因;5,eaeA基因;6,st基因;7,lt基因;8,aatA基因;9,阴性对照。
Fig.2 PCR identification results of isolated E. coli strain M, DL5000 marker; 1, V3-V6 region of 16S rRNA; 2, stx gene; 3, ipaH gene; 4, bfpA gene; 5, eaeA gene; 6, st gene; 7, lt gene; 8, aatA gene; 9, Negative control.
生化试验 Biochemical test | 结果 Result |
---|---|
葡萄糖 Glucose | + |
乳糖 Lactose | + |
麦芽糖 Maltose | + |
甘露醇 Mannitol | + |
山梨醇 Sorbic alcohol | + |
鸟氨酸脱羧酶Ornithinede carboxylase | + |
枸橼酸 Citric acid | - |
H2S | - |
尿素 Urea | - |
甲基红 Methyl red | + |
VP试验 VP test | - |
吲哚试验Indole test | - |
表2 大肠埃希菌分离菌株的生化鉴定结果
Table 2 Biochemical characteristics of isolated E. coli strain
生化试验 Biochemical test | 结果 Result |
---|---|
葡萄糖 Glucose | + |
乳糖 Lactose | + |
麦芽糖 Maltose | + |
甘露醇 Mannitol | + |
山梨醇 Sorbic alcohol | + |
鸟氨酸脱羧酶Ornithinede carboxylase | + |
枸橼酸 Citric acid | - |
H2S | - |
尿素 Urea | - |
甲基红 Methyl red | + |
VP试验 VP test | - |
吲哚试验Indole test | - |
药剂 Antimicrobial agent | 判定结果 Interpretation |
---|---|
氨苄西林Ampicillin | R |
阿莫西林Amoxicillin | R |
青霉素Penicillin | R |
头孢噻吩Cefthiophene | R |
头孢噻呋Ceftiofur | R |
头孢噻肟Cefotaxime | I |
链霉素Streptomycin | S |
庆大霉素Gentamicin | R |
阿米卡星Amikacin | R |
卡那霉素Kanamycin | R |
壮观霉素Spectinomycin | R |
红霉素Erythromycin | R |
替米考星Tilmicosin | R |
强力霉素Doxycycline | R |
四环素Tetracycline | R |
氟苯尼考Florfenicol | I |
林可霉素Lincomycin | R |
复方新诺明Trimethoprim | R |
恩诺沙星Enrofloxacin | I |
环丙沙星Ciprofloxacin | S |
表3 大肠埃希菌分离菌株的药敏实验结果
Table 3 Susceptibility test results of isolated E. coli strain
药剂 Antimicrobial agent | 判定结果 Interpretation |
---|---|
氨苄西林Ampicillin | R |
阿莫西林Amoxicillin | R |
青霉素Penicillin | R |
头孢噻吩Cefthiophene | R |
头孢噻呋Ceftiofur | R |
头孢噻肟Cefotaxime | I |
链霉素Streptomycin | S |
庆大霉素Gentamicin | R |
阿米卡星Amikacin | R |
卡那霉素Kanamycin | R |
壮观霉素Spectinomycin | R |
红霉素Erythromycin | R |
替米考星Tilmicosin | R |
强力霉素Doxycycline | R |
四环素Tetracycline | R |
氟苯尼考Florfenicol | I |
林可霉素Lincomycin | R |
复方新诺明Trimethoprim | R |
恩诺沙星Enrofloxacin | I |
环丙沙星Ciprofloxacin | S |
菌株类型 Strain type | 菌株名 Strain name | ZRP2 | ZRP3 | ZRP4 | ZRP5 |
---|---|---|---|---|---|
标准菌株 | CVCC1495 | - | - | - | - |
Standard | CVCC232 | + | + | - | - |
strain | CVCC249 | - | - | - | + |
EHEC | PARX | - | - | - | - |
WZ01 | - | - | - | - | |
EAEC | ZS185 | - | - | - | - |
ZS85 | - | - | - | - | |
EIEC | DC10 | + | + | - | - |
DC16 | - | - | - | - | |
DC23 | - | - | - | - | |
FL15 | + | + | - | + | |
TCQX | + | + | - | - | |
EPEC | DCW | + | + | + | - |
ZB16 | + | + | + | + | |
ZHC1 | + | + | + | - | |
ZHC2 | - | - | - | - | |
ZK01 | - | - | - | + | |
ZK02 | - | - | - | + | |
ZK15 | - | - | - | + | |
ZK16 | - | - | - | + | |
ZK1901 | - | - | - | + | |
ZK1902 | - | - | - | + | |
ZK1903 | - | - | - | + | |
ZX01 | + | + | - | - | |
NPEC | JX03 | + | - | - | - |
JX04 | - | - | - | - | |
XCF1 | - | - | - | - | |
XCF2 | + | + | - | - |
表4 噬菌体宿主谱测定
Table 4 Host ranges of isolated bacteriophages
菌株类型 Strain type | 菌株名 Strain name | ZRP2 | ZRP3 | ZRP4 | ZRP5 |
---|---|---|---|---|---|
标准菌株 | CVCC1495 | - | - | - | - |
Standard | CVCC232 | + | + | - | - |
strain | CVCC249 | - | - | - | + |
EHEC | PARX | - | - | - | - |
WZ01 | - | - | - | - | |
EAEC | ZS185 | - | - | - | - |
ZS85 | - | - | - | - | |
EIEC | DC10 | + | + | - | - |
DC16 | - | - | - | - | |
DC23 | - | - | - | - | |
FL15 | + | + | - | + | |
TCQX | + | + | - | - | |
EPEC | DCW | + | + | + | - |
ZB16 | + | + | + | + | |
ZHC1 | + | + | + | - | |
ZHC2 | - | - | - | - | |
ZK01 | - | - | - | + | |
ZK02 | - | - | - | + | |
ZK15 | - | - | - | + | |
ZK16 | - | - | - | + | |
ZK1901 | - | - | - | + | |
ZK1902 | - | - | - | + | |
ZK1903 | - | - | - | + | |
ZX01 | + | + | - | - | |
NPEC | JX03 | + | - | - | - |
JX04 | - | - | - | - | |
XCF1 | - | - | - | - | |
XCF2 | + | + | - | - |
噬菌体滴度 Bacteriophage titer/ (PFU·mL-1) | 细菌浓度 Bacteria concentration/ (CFU·mL-1) | 混合培养后噬菌体滴度 Bacteriophage titer after co-culture/(PFU·mL-1) | 噬菌体扩增比值 Bacteriophage amplification ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
ZRP2 | ZRP3 | ZRP4 | ZRP5 | ZRP2 | ZRP3 | ZRP4 | ZRP5 | ||
1×109 | 1×108 | 9.31×1010 | 4.87×1010 | 4.15×109 | 3.72×1010 | 93.1 | 48.7 | 4.15 | 37.2 |
1×108 | 1×108 | 1.24×1011 | 5.53×1010 | 6.42×108 | 5.48×1010 | 1 240 | 553 | 6.42 | 548 |
1×107 | 1×108 | 1.61×1011 | 5.66×1010 | 1.23×108 | 1.35×1011 | 16 100 | 5 660 | 12.3 | 13 500 |
1×106 | 1×108 | 1.39×1011 | 4.11×1010 | 6.49×106 | 3.68×1011 | 139 000 | 41 000 | 6.49 | 368 000 |
1×105 | 1×108 | 6.11×1010 | 1.76×1010 | 5.45×105 | 1.55×109 | 611 000 | 176 000 | 5.45 | 15 540 |
1×104 | 1×108 | 5.96×108 | 2.89×108 | 4.79×104 | 7.24×107 | 59 600 | 28 900 | 4.79 | 7 240 |
表5 感染复数测定结果
Table 5 Multiplicity of infection of isolated bacteriophages
噬菌体滴度 Bacteriophage titer/ (PFU·mL-1) | 细菌浓度 Bacteria concentration/ (CFU·mL-1) | 混合培养后噬菌体滴度 Bacteriophage titer after co-culture/(PFU·mL-1) | 噬菌体扩增比值 Bacteriophage amplification ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
ZRP2 | ZRP3 | ZRP4 | ZRP5 | ZRP2 | ZRP3 | ZRP4 | ZRP5 | ||
1×109 | 1×108 | 9.31×1010 | 4.87×1010 | 4.15×109 | 3.72×1010 | 93.1 | 48.7 | 4.15 | 37.2 |
1×108 | 1×108 | 1.24×1011 | 5.53×1010 | 6.42×108 | 5.48×1010 | 1 240 | 553 | 6.42 | 548 |
1×107 | 1×108 | 1.61×1011 | 5.66×1010 | 1.23×108 | 1.35×1011 | 16 100 | 5 660 | 12.3 | 13 500 |
1×106 | 1×108 | 1.39×1011 | 4.11×1010 | 6.49×106 | 3.68×1011 | 139 000 | 41 000 | 6.49 | 368 000 |
1×105 | 1×108 | 6.11×1010 | 1.76×1010 | 5.45×105 | 1.55×109 | 611 000 | 176 000 | 5.45 | 15 540 |
1×104 | 1×108 | 5.96×108 | 2.89×108 | 4.79×104 | 7.24×107 | 59 600 | 28 900 | 4.79 | 7 240 |
[1] | GORDILLO ALTAMIRANO F L, BARR J J. Phage therapy in the postantibiotic era[J]. Clinical Microbiology Reviews, 2019, 32(2): e00066. |
[2] |
LOC-CARRILLO C, ABEDON S T. Pros and cons of phage therapy[J]. Bacteriophage, 2011, 1(2): 111-114.
DOI URL |
[3] |
GOLKAR Z, BAGASRA O, PACE D G. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis[J]. Journal of Infection in Developing Countries, 2014, 8(2): 129-136.
DOI URL |
[4] |
CHATTERJEE A, DUERKOP B A. Beyond bacteria: bacteriophage-eukaryotic host interactions reveal emerging paradigms of health and disease[J]. Frontiers in Microbiology, 2018, 9: 1394.
DOI URL |
[5] |
YAP M L, ROSSMANN M G. Structure and function of bacteriophage T4[J]. Future Microbiology, 2014, 9(12): 1319-1327.
DOI URL |
[6] |
NILSSON A S. Phage therapy: constraints and possibilities[J]. Upsala Journal of Medical Sciences, 2014, 119(2): 192-198.
DOI URL |
[7] |
LUZ MARÍA CHACÓN J, LIZETH TAYLOR C, CARMEN VALIENTE A, et al. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples[J]. Brazilian Journal of Microbiology, 2012, 43(4): 1319-1326.
DOI URL |
[8] |
AL-MAMUN A, MILY A, SARKER P, et al. Treatment with phenylbutyrate in a pre-clinical trial reduces diarrhea due to enteropathogenic Escherichia coli: link to cathelicidin induction[J]. Microbes and Infection, 2013, 15(13): 939-950.
DOI URL |
[9] | FARFÁN-GARCÍA A E, ARIZA-ROJAS S C, VARGAS-CÁRDENAS F A, et al. Virulence mechanisms of enteropathogenic Escherichia coli[J]. Revista Chilena De Infectologia, 2016, 33(4): 438-450. |
[10] | SLATER S L, SÅGFORS A M, POLLARD D J, et al. The type Ⅲ secretion system of pathogenic Escherichia coli[J]. Current Topics in Microbiology and Immunology, 2018, 416: 51-72. |
[11] | SLATER S L, SAGFORS A M, POLLARD D J, et al. The type Ⅲ secretion system of pathogenic Escherichia coli[M]// FRANKEL G, RON E Z. Escherichia coli, a versatile pathogen. Cham, Switzerland: Springer Cham, 2018. |
[12] |
SOLANS L, ARNAL J L, SANZ C, et al. Rabbit enteropathies on commercial farms in the Iberian peninsula: etiological agents identified in 2018-2019[J]. Animals, 2019, 9(12): 1142.
DOI URL |
[13] | HYMAN P, ABEDON S T. Bacteriophage host range and bacterial resistance[J]. Advances in Applied Microbiology, 2010, 70: 217-248. |
[14] |
SKURNIK M, PAJUNEN M, KILJUNEN S. Biotechnological challenges of phage therapy[J]. Biotechnology Letters, 2007, 29(7): 995-1003.
DOI URL |
[15] |
BRUTTIN A, BRÜSSOW H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(7): 2874-2878.
DOI URL |
[16] | KORTRIGHT K E, CHAN B K, KOFF J L, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2): 219-232. |
[17] |
SULAKVELIDZE A, ALAVIDZE Z, MORRIS J G JR. Bacteriophage therapy[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(3): 649-659.
DOI URL |
[18] |
ZHANG J C, LI Z, CAO Z H, et al. Bacteriophages as antimicrobial agents against major pathogens in swine: a review[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 39.
DOI URL |
[19] |
BRÜSSOW H. Phage therapy: the Escherichia coli experience[J]. Microbiology (Reading, England), 2005, 151(Pt 7): 2133-2140.
DOI URL |
[20] |
CHIBANI-CHENNOUFI S, SIDOTI J, BRUTTIN A, et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(7): 2558-2569.
DOI URL |
[21] |
TANJI Y, SHIMADA T, FUKUDOMI H, et al. Therapeutic use of phage cocktail for controlling Escherichia coli O157: H7 in gastrointestinal tract of mice[J]. Journal of Bioscience and Bioengineering, 2005, 100(3): 280-287.
DOI URL |
[22] |
LIU N, LEWIS C, ZHENG W M, et al. Phage cocktail therapy: multiple ways to suppress pathogenicity[J]. Trends in Plant Science, 2020, 25(4): 315-317.
DOI URL |
[1] | 李旭东, 刘永涛, 杨先乐, 杨移斌, 艾晓辉. 蛙类歪头、破头与白眼综合征病原分析[J]. 浙江农业学报, 2022, 34(8): 1617-1625. |
[2] | 陈诗雨, 徐美余, 邓征宇, 王峰, 张麒麟, 邓先余, 林连兵. 志贺氏菌噬菌体ΦDS8对患病肉鸡的治疗及其肠道菌群的影响[J]. 浙江农业学报, 2022, 34(7): 1386-1395. |
[3] | 杨玲, 沙楠景, 潘鹏举, 吴伯志. 云南地区铁线莲叶枯病病原菌的鉴定和主要生物学特性[J]. 浙江农业学报, 2022, 34(7): 1449-1456. |
[4] | 王晓丽, 赵英伟, 孔晓娜, 曹子林. 蓝桉根际菌根真菌的分离鉴定及其对蓝桉生长和光合特性的影响[J]. 浙江农业学报, 2022, 34(5): 1015-1023. |
[5] | 杨成年, 李芳, 朱成科, 唐征县, 易子琳, 韩璐璐, 阳龙江, 彭小倩, 贺蝶, 李杨, 任朝颖, 吕光俊. 杂交鲟出血病病原的分离鉴定与组织病理学观察[J]. 浙江农业学报, 2021, 33(12): 2275-2285. |
[6] | 陈梦竹, 康振亚, 郭向辉, 耿毅, 白明焕, 欧阳萍, 陈德芳, 黄小丽, 赖为民. 一株岩原鲤源致病性ST-251型嗜水气单胞菌的分离与生物学特性研究[J]. 浙江农业学报, 2021, 33(12): 2286-2294. |
[7] | 陈润臣, 王艺凝, 刘潇文, 王红艳, 丁强, 王鸿磊. 一株野生多脂鳞伞的鉴定、人工栽培与营养成分分析[J]. 浙江农业学报, 2021, 33(12): 2330-2338. |
[8] | 徐海, 王健, 郭长明, 董洪燕, 邓碧华, 侯继波. 单域抗体T7噬菌体展示文库构建与鉴定[J]. 浙江农业学报, 2021, 33(1): 27-33. |
[9] | 李戌清, 严建立, 阮松林. 三叶青炭疽病病原菌的鉴定与生物学特性[J]. 浙江农业学报, 2020, 32(11): 2009-2019. |
[10] | 袁献宇, 杨龙斌, 何赞赞, 毛天骄, 何长生, 占松鹤, 孙裴, 魏建忠, 李郁. 安徽省猪伪狂犬病毒的分离鉴定及其主要毒力基因分子特征[J]. 浙江农业学报, 2020, 32(1): 43-56. |
[11] | 易可可, 阴文奇, 周远成, 蒋金蓁, 张白玉, 李中银, 颜其贵. 四株猪伪狂犬病毒株的分离鉴定与主要毒力基因分析[J]. 浙江农业学报, 2019, 31(9): 1429-1436. |
[12] | 杨移斌, 艾晓辉, 宋怿, 董靖, 胥宁, 姜兰. 黄颡鱼溶血性腹水病初探[J]. 浙江农业学报, 2019, 31(8): 1239-1248. |
[13] | 李戌清, 张敬泽, 张雅, 吴根良. 浙江省绍兴市茄子黄萎病菌菌株致病型鉴定及其生物学特性研究[J]. 浙江农业学报, 2019, 31(5): 784-789. |
[14] | 崔一龙, 石芸, 杨达汉, 尹有勤, 薛江东, 霍晓伟, 马德慧. 马源蜡样芽孢杆菌的分离鉴定及毒力基因检测[J]. 浙江农业学报, 2019, 31(2): 216-221. |
[15] | 周会明, 张焱珍, 柴红梅, 杨荣情, 谭莹, 张萍萍, 白玉英, 赵一莲, 金玉洁. 一株临沧野生黄鸡?的鉴定与生长条件研究[J]. 浙江农业学报, 2019, 31(10): 1655-1662. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 765
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 398
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||