浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1617-1625.DOI: 10.3969/j.issn.1004-1524.2022.08.06
李旭东1(), 刘永涛2, 杨先乐3, 杨移斌2,*(
), 艾晓辉1,2
收稿日期:
2021-09-30
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
杨移斌
作者简介:
*杨移斌,E-mail: yangyb1988@126.com基金资助:
LI Xudong1(), LIU Yongtao2, YANG Xianle3, YANG Yibin2,*(
), AI Xiaohui1,2
Received:
2021-09-30
Online:
2022-08-25
Published:
2022-08-26
Contact:
YANG Yibin
摘要:
为探明湖北、福建等主养区一系列蛙疾病的发病原因,从具有典型歪头、破头与白眼等症状的蛙脑部和内脏器官分离到40株优势菌。经16S rRNA 基因序列比对,发现40株优势菌均与米尔伊丽莎白菌(Elizabethkingia miricola)同源。经生理生化鉴定、系统发育分析发现,这40株优势菌存在遗传差异,宿主和区域是影响亲缘关系的重要因素,并判定菌株典型株QW08为米尔伊丽莎白菌。回归感染实验证实QW08为蛙类歪头、破头与白眼病的病原菌。组织病理学观察显示,米尔伊丽莎白菌感染黑斑蛙可引起其全身多脏器与组织损伤,脑、肠道、肝、脾与肾等组织器官损伤极其严重,主要病理变化表现为变性、坏死和炎症反应,致多组织器官功能障碍而引起感染蛙死亡。药敏特性分析显示,分离株QW08仅对氟苯尼考高度敏感,对其余19种抗生素表现出不同程度的耐药。研究结果为蛙类该病防控提供了理论依据。
中图分类号:
李旭东, 刘永涛, 杨先乐, 杨移斌, 艾晓辉. 蛙类歪头、破头与白眼综合征病原分析[J]. 浙江农业学报, 2022, 34(8): 1617-1625.
LI Xudong, LIU Yongtao, YANG Xianle, YANG Yibin, AI Xiaohui. Analysis on pathogens of frogs with crooked head, broken head or white eye[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1617-1625.
来源 Source | 编号 Serial number | GenBank登录号 GenBank accession number |
---|---|---|
武汉黑斑蛙 | QW08 | MZ315056 |
Black spotted frog from Wuhan | QW09 | MZ315057 |
QW11 | MZ315058 | |
QW12 | MZ315059 | |
QW14 | MZ315060 | |
QW15 | MZ315061 | |
荆州牛蛙 | MW01 | MZ315062 |
Bullfrog from Jingzhou | MW03 | MZ315063 |
MW04 | MZ315064 | |
MW05 | MZ315065 | |
MW06 | MZ315066 | |
MW07 | MZ315067 | |
MW10 | MZ315068 | |
MW11 | MZ315069 | |
荆州黑斑蛙 | QW02 | MZ315070 |
Black spotted frog from Jingzhou | QW03 | MZ315071 |
QW04 | MZ315072 | |
QW05 | MZ315073 | |
QW06 | MZ315074 | |
QW07 | MZ315075 | |
QW10 | MZ315076 | |
QW13 | MZ315077 | |
QW16 | MZ315078 | |
QW17 | MZ315079 | |
QW18 | MZ315080 | |
漳州牛蛙 | MW15 | MZ315081 |
Bullfrog from Zhangzhou | MW16 | MZ315082 |
MW18 | MZ315083 | |
MW19 | MZ315084 | |
MW20 | MZ315085 | |
MW12 | MZ315086 | |
MW13 | MZ315087 | |
MW22 | MZ315088 | |
MW23 | MZ315089 | |
MW24 | MZ315090 | |
MW25 | MZ315091 | |
MW26 | MZ315092 | |
MW27 | MZ315093 | |
MW28 | MZ315094 | |
MW29 | MZ315095 |
表1 分离的40株细菌的16S rRNA序列GenBank登录号
Table 1 GenBank accession number of 16S rRNA sequences of 40 isolated strains
来源 Source | 编号 Serial number | GenBank登录号 GenBank accession number |
---|---|---|
武汉黑斑蛙 | QW08 | MZ315056 |
Black spotted frog from Wuhan | QW09 | MZ315057 |
QW11 | MZ315058 | |
QW12 | MZ315059 | |
QW14 | MZ315060 | |
QW15 | MZ315061 | |
荆州牛蛙 | MW01 | MZ315062 |
Bullfrog from Jingzhou | MW03 | MZ315063 |
MW04 | MZ315064 | |
MW05 | MZ315065 | |
MW06 | MZ315066 | |
MW07 | MZ315067 | |
MW10 | MZ315068 | |
MW11 | MZ315069 | |
荆州黑斑蛙 | QW02 | MZ315070 |
Black spotted frog from Jingzhou | QW03 | MZ315071 |
QW04 | MZ315072 | |
QW05 | MZ315073 | |
QW06 | MZ315074 | |
QW07 | MZ315075 | |
QW10 | MZ315076 | |
QW13 | MZ315077 | |
QW16 | MZ315078 | |
QW17 | MZ315079 | |
QW18 | MZ315080 | |
漳州牛蛙 | MW15 | MZ315081 |
Bullfrog from Zhangzhou | MW16 | MZ315082 |
MW18 | MZ315083 | |
MW19 | MZ315084 | |
MW20 | MZ315085 | |
MW12 | MZ315086 | |
MW13 | MZ315087 | |
MW22 | MZ315088 | |
MW23 | MZ315089 | |
MW24 | MZ315090 | |
MW25 | MZ315091 | |
MW26 | MZ315092 | |
MW27 | MZ315093 | |
MW28 | MZ315094 | |
MW29 | MZ315095 |
试验项目 Test items | QW08 | 米尔伊丽莎白菌 E. miricola |
---|---|---|
葡萄糖 Glucose | + | + |
精氨酸双水解酶 Arginine dihydrolase | - | - |
脲酶Urease | - | - |
肌醇Inositol | - | - |
柠檬酸盐Citrate | - | - |
纤维二糖Cellobiose | - | - |
水杨酸 Salicylic | - | - |
H2S产生 H2S production | - | - |
明胶Gelatin | + | + |
氧化酶Oxidase | - | - |
硝酸盐还原 Nitrate reduction | - | - |
鸟氨酸脱羧酶 Ornithine decarboxyla | - | - |
赖氨酸脱羧酶Lysin decarboxylase | - | - |
乳糖Lactose | - | - |
鼠李糖Rhamnose | - | - |
蔗糖Saccharose | - | - |
阿拉伯糖Arabinose | - | - |
麦芽糖Maltose | - | - |
棉子糖Raffinose | - | - |
甘露糖 Mannose | + | + |
吲哚 Indol | + | + |
丙二酸盐 Malonate | - | - |
表2 菌株QW08的生化特性
Table 2 Biochemical characteristics of QW08 strain
试验项目 Test items | QW08 | 米尔伊丽莎白菌 E. miricola |
---|---|---|
葡萄糖 Glucose | + | + |
精氨酸双水解酶 Arginine dihydrolase | - | - |
脲酶Urease | - | - |
肌醇Inositol | - | - |
柠檬酸盐Citrate | - | - |
纤维二糖Cellobiose | - | - |
水杨酸 Salicylic | - | - |
H2S产生 H2S production | - | - |
明胶Gelatin | + | + |
氧化酶Oxidase | - | - |
硝酸盐还原 Nitrate reduction | - | - |
鸟氨酸脱羧酶 Ornithine decarboxyla | - | - |
赖氨酸脱羧酶Lysin decarboxylase | - | - |
乳糖Lactose | - | - |
鼠李糖Rhamnose | - | - |
蔗糖Saccharose | - | - |
阿拉伯糖Arabinose | - | - |
麦芽糖Maltose | - | - |
棉子糖Raffinose | - | - |
甘露糖 Mannose | + | + |
吲哚 Indol | + | + |
丙二酸盐 Malonate | - | - |
图4 菌株QW08的人工感染试验结果 A、B、C组每只注射齐量分别为1×107、1×105、1×103 CFU。D组每只注射0.1 mL PBS缓冲液。
Fig.4 Artificial infection results of QW08 strain Each frog in group A, B and C was injected 1×107, 1×105 and 1×103 CFU, respectively.Each frog in group D was injected 0.1 mL PBS buffer.
图5 自然发病蛙的不同组织病理学变化 A,肠;B,肝;C,脑;D,脑;E,脾;F,肾。
Fig.5 Pathological changes in different tissues of naturally diseased frog A, Intestines; B, Liver; C, Brain; D, Brain; E, Spleen; F, Kidney.
药物 Drug | 抑菌圈直径判断标准 Judgment standard of inhibition zone diameter/mm | 药物量 Dose/g | 抑菌圈直径 Inhibition zone diameter/mm | |||
---|---|---|---|---|---|---|
R | I | S | ||||
β-内酰胺类β-Lactams | 青霉素Penicillin | ≤17 | 18~20 | ≥21 | 10 | 0R |
阿莫西林Amoxicillin | ≤13 | 14~17 | ≥18 | 20 | 0R | |
头孢类Cephalosporin | 头孢唑肟Ceftizoxime | ≤14 | 15~19 | ≥20 | 30 | 18I |
头孢拉定Cefradine | ≤14 | 15~17 | ≥18 | 30 | 0R | |
头孢噻肟Cefotaxime | ≤14 | 15~22 | ≥23 | 30 | 10R | |
氨基糖苷类Aminoglycosides | 庆大霉素Gentamicin | ≤12 | 13~14 | ≥15 | 10 | 0R |
链霉素Streptomycin | ≤11 | 12~14 | ≥15 | 10 | 10R | |
奈替米星Netilmicin | ≤12 | 13~14 | ≥15 | 30 | 0R | |
卡那霉素Kanamycin | ≤13 | 14~17 | ≥18 | 30 | 0R | |
妥布霉素Tobramycin | ≤12 | 13~14 | ≥15 | 10 | 0R | |
新霉素Neomycin | ≤12 | 13~16 | ≥17 | 30 | 0R | |
大环内酯类Macrolides | 阿奇霉素Azithromycin | ≤13 | 14~17 | ≥18 | 15 | 15I |
红霉素Erythromycin | ≤13 | 14~22 | ≥23 | 15 | 16I | |
四环素类Tetracyclines | 四环素Tetracycline | ≤18 | 19~22 | ≥23 | 30 | 10R |
强力霉素Doxycycline | ≤12 | 13~15 | ≥16 | 30 | 12R | |
喹诺酮类Quinolones | 依诺沙星Enoxacin | ≤14 | 15~17 | ≥18 | 10 | 12R |
诺氟沙星Norfloxacin | ≤12 | 13~16 | ≥17 | 10 | 8R | |
酰胺醇类Amphenicols | 氯霉素Chloramphenicol | ≤12 | 13~17 | ≥18 | 300 | 15I |
氟苯尼考Florfenicol | ≤12 | 13~17 | ≥18 | 75 | 22S | |
磺胺类Sulfonamides | 磺胺异噁唑Sulfaisoxazole | ≤12 | 13~16 | ≥17 | 300 | 0R |
表3 菌株QW08对药物敏感性试验结果
Table 3 Antibiotic susceptibility test of QW08 strain
药物 Drug | 抑菌圈直径判断标准 Judgment standard of inhibition zone diameter/mm | 药物量 Dose/g | 抑菌圈直径 Inhibition zone diameter/mm | |||
---|---|---|---|---|---|---|
R | I | S | ||||
β-内酰胺类β-Lactams | 青霉素Penicillin | ≤17 | 18~20 | ≥21 | 10 | 0R |
阿莫西林Amoxicillin | ≤13 | 14~17 | ≥18 | 20 | 0R | |
头孢类Cephalosporin | 头孢唑肟Ceftizoxime | ≤14 | 15~19 | ≥20 | 30 | 18I |
头孢拉定Cefradine | ≤14 | 15~17 | ≥18 | 30 | 0R | |
头孢噻肟Cefotaxime | ≤14 | 15~22 | ≥23 | 30 | 10R | |
氨基糖苷类Aminoglycosides | 庆大霉素Gentamicin | ≤12 | 13~14 | ≥15 | 10 | 0R |
链霉素Streptomycin | ≤11 | 12~14 | ≥15 | 10 | 10R | |
奈替米星Netilmicin | ≤12 | 13~14 | ≥15 | 30 | 0R | |
卡那霉素Kanamycin | ≤13 | 14~17 | ≥18 | 30 | 0R | |
妥布霉素Tobramycin | ≤12 | 13~14 | ≥15 | 10 | 0R | |
新霉素Neomycin | ≤12 | 13~16 | ≥17 | 30 | 0R | |
大环内酯类Macrolides | 阿奇霉素Azithromycin | ≤13 | 14~17 | ≥18 | 15 | 15I |
红霉素Erythromycin | ≤13 | 14~22 | ≥23 | 15 | 16I | |
四环素类Tetracyclines | 四环素Tetracycline | ≤18 | 19~22 | ≥23 | 30 | 10R |
强力霉素Doxycycline | ≤12 | 13~15 | ≥16 | 30 | 12R | |
喹诺酮类Quinolones | 依诺沙星Enoxacin | ≤14 | 15~17 | ≥18 | 10 | 12R |
诺氟沙星Norfloxacin | ≤12 | 13~16 | ≥17 | 10 | 8R | |
酰胺醇类Amphenicols | 氯霉素Chloramphenicol | ≤12 | 13~17 | ≥18 | 300 | 15I |
氟苯尼考Florfenicol | ≤12 | 13~17 | ≥18 | 75 | 22S | |
磺胺类Sulfonamides | 磺胺异噁唑Sulfaisoxazole | ≤12 | 13~16 | ≥17 | 300 | 0R |
[1] | 陶吉兴, 刘安兴, 孙孟军. 浙江重点两栖动物种群数量研究[J]. 浙江大学学报(农业与生命科学版), 2004, 30(5):536-540. |
TAO J X, LIU A X, SUN M J. Research on population quantity of main amphibian in Zhejiang Province[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2004, 30(5):536-540. (in Chinese with English abstract) | |
[2] | 叶容晖. 棘胸蛙微卫星分子标记筛选及其种群遗传分析[D]. 金华: 浙江师范大学, 2009. |
YE R H. SSR isolation and population genetic analysis of Paa spinosa[D]. Jinhua: Zhejiang Normal University, 2009. (in Chinese with English abstract) | |
[3] | 刘晓东, 杨金先, 龚晖, 等. 一株牛蛙源虹彩病毒的分离及鉴定[J]. 中国动物传染病学报, 2012, 20(1): 16-21. |
LIU X D, YANG J X, GONG H, et al. Characterization of an iridovirus isolate from Rana catesbiana[J]. Chinese Journal of Animal Infectious Diseases, 2012, 20(1): 16-21. (in Chinese with English abstract) | |
[4] | 杨大伟, 吕军仪, 吴金英, 等. 牛蛙(Rana catesbeiana)常见病害及防治的初步研究[J]. 水产科技, 2000(3): 27-30. |
YANG D W, LYU J Y, WU J Y, et al. Preliminary study on common diseases and control of Rana catesbeiana[J]. Fisheries Science and Technology, 2000(3): 27-30 (in Chinese with English abstract) | |
[5] | 钟为铭, 彭芳, 陈康勇, 等. 黑斑蛙蝌蚪出血病病原菌的分离鉴定及药物敏感性[J]. 水产学报, 2022, 46(1): 107-115. |
ZHONG W M, PENG F, CHEN K Y, et al. Isolation, identification and drug sensitivity of the pathogen causing hemorrhagic disease of Rana nigromaculata tadpole[J]. Journal of Fisheries of China, 2022, 46(1): 107-115. (in Chinese with English abstract) | |
[6] |
雷雪平, 耿毅, 余泽辉, 等. 棘胸蛙脑膜炎败血伊丽莎白菌的分离鉴定及其感染的病理损伤[J]. 浙江农业学报, 2018, 30(3): 371-377.
DOI |
LEI X P, GENG Y, YU Z H, et al. Isolation and identification of Elizabethkingia meningoseptica from Chinese spiny frog (Quasipaa spinosa) and pathological lesions of its infection[J]. Acta Agriculturae Zhejiangensis, 2018, 30(3): 371-377. (in Chinese with English abstract) | |
[7] | WHILEY R A, HARDIE J M, GENUS I. Bergey's manual of systematic bacteriology[M]. New York: Springer, 2009: 600-623. |
[8] | 胡瑞雪. 蛙源伊丽莎白菌的鉴定、分子流行病学及其碳青霉烯酶多样性研究[D]. 武汉: 华中农业大学, 2020 |
HU R X. Identification, molecular epidemiology and diversity of carbapenemases in Elizabethkingia sp. frog[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[9] | 秦振阳. 黑斑蛙“歪头病”病原菌的分离鉴定及全基因组测序分析[D]. 雅安: 四川农业大学, 2018. |
QIN Z Y. Isolation, identification and whole-genome sequencing analysis of pathogenic bacteria of Pelophylax nigromaculatus torticollis disease[D]. Ya'an: Sichuan Agricultural University, 2018. (in Chinese with English abstract) | |
[10] | Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement: M100-S19[S/OL]. [2021-09-20]. https://www.yeec.com/uploadimages1/forum/2010-4/2010416905361382.pdf. |
[11] | CHEW K L, CHENG B, LIN R T P, et al. Elizabethkingia anophelis is the dominant Elizabethkingia species found in blood cultures in Singapore[J]. Journal of Clinical Microbiology, 2018, 56(3): e01445-e01417. |
[12] |
LAU S K P, CHOW W N, FOO C H, et al. Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality[J]. Scientific Reports, 2016, 6: 26045.
DOI URL |
[13] |
GREEN O, MURRAY P, GEA-BANACLOCHE J C. Sepsis caused by Elizabethkingia miricola successfully treated with tigecycline and levofloxacin[J]. Diagnostic Microbiology and Infectious Disease, 2008, 62(4): 430-432.
DOI URL |
[14] |
BERNARDET J F, VANCANNEYT M, MATTE-TAILLIEZ O, et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals[J]. Systematic and Applied Microbiology, 2005, 28(7): 640-660.
DOI URL |
[15] | BORDELO J, VIEGAS C, COELHO C, et al. First report of bacteremia caused by Elizabethkingia meningoseptica in a dog[J]. The Canadian Veterinary Journal=La Revue Veterinaire Canadienne, 2016, 57(9): 994. |
[16] |
JACOBS A, CHENIA H Y. Biofilm formation and adherence characteristics of an Elizabethkingia meningoseptica isolate from Oreochromis mossambicus[J]. Annals of Clinical Microbiology and Antimicrobials, 2011, 10: 16.
DOI URL |
[17] | LAITH A A, MAZLAN A G, AZMI AMBAK M, et al. Isolation and identification of Elizabethkingia meningoseptica from diseased African catfish Clarias gariepinus[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6(4): 1070-1076. |
[18] | 邸军, 张书环, 黄君, 等. 中华鲟脑膜败血伊丽莎白菌的分离鉴定及药敏特性[J]. 水产学报, 2018, 42(1): 120-130. |
DI J, ZHANG S H, HUANG J, et al. Isolation, identification and antibiotic sensitivity of Elizabethkingia meningoseptica from Chinese sturgeon (Acipenser sinensis)[J]. Journal of Fisheries of China, 2018, 42(1): 120-130. (in Chinese with English abstract) | |
[19] |
XIE Z Y, ZHOU Y C, WANG S F, et al. First isolation and identification of Elizabethkingia meningoseptica from cultured tiger frog, Rana tigerina rugulosa[J]. Veterinary Microbiology, 2009, 138(1/2): 140-144.
DOI URL |
[20] | GREEN S L, BOULEY D M, TOLWANI R J, et al. Identification and management of an outbreak of Flavobacterium meningosepticum infection in a colony of South African clawed frogs (Xenopus laevis)[J]. Journal of the American Veterinary Medical Association, 1999, 214(12): 1833-1838. |
[21] | RANSANGAN J, ZAINURI N, LAL T T M, et al. Identification of Elizabethkingia meningoseptica from American bullfrog (Rana catesbeiana) farmed in Sabah, Malaysia using PCR method and future management of outbreak[J]. Malaysian Journal of Microbiology, 2013: 13-23. |
[22] |
HU R X, YUAN J F, MENG Y, et al. Pathogenic Elizabethkingia miricola infection in cultured black-spotted frogs, China, 2016[J]. Emerging Infectious Diseases, 2017, 23(12): 2055-2059.
DOI URL |
[23] | HUANG X L, FENG Y, TANG H, et al. Candidate animal disease model of Elizabethkingia spp. infection in humans, based on the systematic pathology and oxidative damage caused by E. miricola in Pelophylax nigromaculatus[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 6407524. |
[24] | BELLAIS S, LÉOTARD S, POIREL L, et al. Molecular characterization of a carbapenem-hydrolyzing β-lactamase from Chryseobacterium(Flavobacterium) indologenes[J]. FEMS Microbiology Letters, 1999, 171(2): 127-132. |
[25] |
YUM J H, LEE E Y, HUR S H, et al. Genetic diversity of chromosomal metallo-beta-lactamase genes in clinical isolates of Elizabethkingia meningoseptica from Korea[J]. Journal of Microbiology (Seoul, Korea), 2010, 48(3): 358-364.
DOI URL |
[1] | 王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608. |
[2] | 王晓丽, 赵英伟, 孔晓娜, 曹子林. 蓝桉根际菌根真菌的分离鉴定及其对蓝桉生长和光合特性的影响[J]. 浙江农业学报, 2022, 34(5): 1015-1023. |
[3] | 樊利虹, 郭红瑞, 吴江, 易军, 马晓平, 苟丽萍, 谢跃, 叶刚, 左之才. 牛源皮特不动杆菌对小鼠的致病性分析[J]. 浙江农业学报, 2021, 33(2): 230-238. |
[4] | 杨成年, 李芳, 朱成科, 唐征县, 易子琳, 韩璐璐, 阳龙江, 彭小倩, 贺蝶, 李杨, 任朝颖, 吕光俊. 杂交鲟出血病病原的分离鉴定与组织病理学观察[J]. 浙江农业学报, 2021, 33(12): 2275-2285. |
[5] | 陈梦竹, 康振亚, 郭向辉, 耿毅, 白明焕, 欧阳萍, 陈德芳, 黄小丽, 赖为民. 一株岩原鲤源致病性ST-251型嗜水气单胞菌的分离与生物学特性研究[J]. 浙江农业学报, 2021, 33(12): 2286-2294. |
[6] | 肖志云, 王伊凝. 基于RF-VR的紫丁香叶片叶绿素含量高光谱反演[J]. 浙江农业学报, 2021, 33(11): 2164-2173. |
[7] | 黄莉萍, 安莉丽, 李芳, 杨成年, 李虹, 吕光俊, 向枭, 孙翰昌, 翟旭亮, 朱成科. 中华鳖弗氏柠檬酸杆菌的鉴定及病理组织观察[J]. 浙江农业学报, 2020, 32(7): 1176-1186. |
[8] | 袁献宇, 杨龙斌, 何赞赞, 毛天骄, 何长生, 占松鹤, 孙裴, 魏建忠, 李郁. 安徽省猪伪狂犬病毒的分离鉴定及其主要毒力基因分子特征[J]. 浙江农业学报, 2020, 32(1): 43-56. |
[9] | 易可可, 阴文奇, 周远成, 蒋金蓁, 张白玉, 李中银, 颜其贵. 四株猪伪狂犬病毒株的分离鉴定与主要毒力基因分析[J]. 浙江农业学报, 2019, 31(9): 1429-1436. |
[10] | 杨移斌, 艾晓辉, 宋怿, 董靖, 胥宁, 姜兰. 黄颡鱼溶血性腹水病初探[J]. 浙江农业学报, 2019, 31(8): 1239-1248. |
[11] | 王元红, 鲁智敏, 张学琪, 刘自敏, 胡子慧, 杨侃侃, 刘红梅, 潘玲, 彭开松, 李永东, 王勇. 一株J亚型禽白血病病毒的分离鉴定及其gp85基因的序列分析[J]. 浙江农业学报, 2019, 31(5): 709-715. |
[12] | 康慧敏, 何嘉乐, 刘晨恺, 周瑶佳, 耿毅, 欧阳萍. 四川地区养殖锦鲤浮肿病毒检测与系统进化分析[J]. 浙江农业学报, 2019, 31(4): 539-544. |
[13] | 白明焕, 耿毅, 邓龙君, 甘维熊, 周剑, 黄小丽, 陈德芳, 欧阳萍, 赵若璇, 谌冰洁. 长薄鳅恶臭假单胞菌的分离鉴定及其感染的病理损伤[J]. 浙江农业学报, 2019, 31(2): 207-215. |
[14] | 崔一龙, 石芸, 杨达汉, 尹有勤, 薛江东, 霍晓伟, 马德慧. 马源蜡样芽孢杆菌的分离鉴定及毒力基因检测[J]. 浙江农业学报, 2019, 31(2): 216-221. |
[15] | 巴少波, 石林, 李群景, 刘正奎, 陈琳, 王晓杜, 宋厚辉. 猪繁殖与呼吸综合征病毒17-ZJ-HZ毒株的分离鉴定与分子流行病学分析[J]. 浙江农业学报, 2018, 30(8): 1303-1311. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 631
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||