浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1599-1608.DOI: 10.3969/j.issn.1004-1524.2022.08.04
王志鹏1(
), 赵剑2, 黄盼2, 崔雪梅2, 南黎2, 宋厚辉1, 鲍国连2, 刘燕2,*
收稿日期:2021-04-03
出版日期:2022-08-25
发布日期:2022-08-26
作者简介:*刘燕,E-mail:ly-liuyan@qq.com通讯作者:
刘燕
基金资助:
WANG Zhipeng1(
), ZHAO Jian2, HUANG Pan2, CUI Xuemei2, NAN Li2, SONG Houhui1, BAO Guolian2, LIU Yan2,*
Received:2021-04-03
Online:2022-08-25
Published:2022-08-26
Contact:
LIU Yan
摘要:
对浙江省某兔场腹泻病兔进行病原分离鉴定,经革兰氏染色和PCR鉴定,分离出致病性大肠埃希菌1株,命名为ZJE1株。ZJE1株对链霉素、环丙沙星敏感。以ZJE1株为宿主菌,分离纯化出噬菌体4株,分别命名为ZRP2、ZRP3、ZRP4和ZRP5,并对其生物学特性、形态与结构特征进行研究。结果显示,4株噬菌体分离株均由六角形的头部、可收缩的尾鞘和尾管组成,均属于肌尾噬菌体科。采用双层平板法测定噬菌体分离株的宿主谱、最佳感染复数、pH稳定性、热稳定性和一步生长曲线。结果显示,ZRP2、ZRP3、ZRP4和ZRP5具有宿主特异性,在37~55 ℃的条件下可保持良好活性。ZRP2、ZRP3在pH值7的条件下可保持良好活性,ZRP4、ZRP5在pH值5~7的条件下可保持良好活性。ZRP2、ZRP3、ZRP5的潜伏期为11~19 min,均能在体外裂解ZJE1株。研究成果可为应用噬菌体治疗兔大肠埃希菌病提供研究基础与数据支持。
中图分类号:
王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608.
WANG Zhipeng, ZHAO Jian, HUANG Pan, CUI Xuemei, NAN Li, SONG Houhui, BAO Guolian, LIU Yan. Isolation, identification and biological characteristics of rabbit-derived Escherichia coli bacteriophage[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1599-1608.
| 基因 Gene | 片段长度 Length/bp | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
|---|---|---|---|
| 16S rRNA | 584 | GGGATGAAAGTTAATACCTTTGCTC | TTCCCGAAGGCACATTCT |
| eaeA | 384 | GACCCGGCACAAGCATAAGC | CCACCTGCAGCAACAAGAGG |
| bfpA | 224 | AATGGTGCTTGCGCTTGCTGC | GCCGCTTTATCCAACCTGGTA |
| stx | 150 | CTGGATTTAATGTCGCATAGTG | AGAACGCCCACTGAGATCATC |
| ipaH | 600 | GTTCCTTGACCGCCTTTCCGATACCGTC | GCCGGTCAGCCACCCTCTGAGAGTAC |
| st | 186 | TCTGTATTGTCTTTTTCACC | TTAATAGCACCCGGTACAAGC |
| lt | 322 | TCTCTATGTGCATACGGAGC | CCATACTGATTGCCGCAAT |
| aatA | 630 | CTGGCGAAAGACTGTATCAT | CAATGTATAGAAATCCGCTGTT |
表1 用于大肠埃希菌鉴定的PCR引物序列
Table 1 Primers used for identification of Escherichia coli
| 基因 Gene | 片段长度 Length/bp | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
|---|---|---|---|
| 16S rRNA | 584 | GGGATGAAAGTTAATACCTTTGCTC | TTCCCGAAGGCACATTCT |
| eaeA | 384 | GACCCGGCACAAGCATAAGC | CCACCTGCAGCAACAAGAGG |
| bfpA | 224 | AATGGTGCTTGCGCTTGCTGC | GCCGCTTTATCCAACCTGGTA |
| stx | 150 | CTGGATTTAATGTCGCATAGTG | AGAACGCCCACTGAGATCATC |
| ipaH | 600 | GTTCCTTGACCGCCTTTCCGATACCGTC | GCCGGTCAGCCACCCTCTGAGAGTAC |
| st | 186 | TCTGTATTGTCTTTTTCACC | TTAATAGCACCCGGTACAAGC |
| lt | 322 | TCTCTATGTGCATACGGAGC | CCATACTGATTGCCGCAAT |
| aatA | 630 | CTGGCGAAAGACTGTATCAT | CAATGTATAGAAATCCGCTGTT |
图2 大肠埃希菌分离菌株的PCR鉴定结果 M,DL5000 DNA分子量标准;1,16S rRNA基因的V3~V6区;2,stx基因;3,ipaH基因;4,bfpA基因;5,eaeA基因;6,st基因;7,lt基因;8,aatA基因;9,阴性对照。
Fig.2 PCR identification results of isolated E. coli strain M, DL5000 marker; 1, V3-V6 region of 16S rRNA; 2, stx gene; 3, ipaH gene; 4, bfpA gene; 5, eaeA gene; 6, st gene; 7, lt gene; 8, aatA gene; 9, Negative control.
| 生化试验 Biochemical test | 结果 Result |
|---|---|
| 葡萄糖 Glucose | + |
| 乳糖 Lactose | + |
| 麦芽糖 Maltose | + |
| 甘露醇 Mannitol | + |
| 山梨醇 Sorbic alcohol | + |
| 鸟氨酸脱羧酶Ornithinede carboxylase | + |
| 枸橼酸 Citric acid | - |
| H2S | - |
| 尿素 Urea | - |
| 甲基红 Methyl red | + |
| VP试验 VP test | - |
| 吲哚试验Indole test | - |
表2 大肠埃希菌分离菌株的生化鉴定结果
Table 2 Biochemical characteristics of isolated E. coli strain
| 生化试验 Biochemical test | 结果 Result |
|---|---|
| 葡萄糖 Glucose | + |
| 乳糖 Lactose | + |
| 麦芽糖 Maltose | + |
| 甘露醇 Mannitol | + |
| 山梨醇 Sorbic alcohol | + |
| 鸟氨酸脱羧酶Ornithinede carboxylase | + |
| 枸橼酸 Citric acid | - |
| H2S | - |
| 尿素 Urea | - |
| 甲基红 Methyl red | + |
| VP试验 VP test | - |
| 吲哚试验Indole test | - |
| 药剂 Antimicrobial agent | 判定结果 Interpretation |
|---|---|
| 氨苄西林Ampicillin | R |
| 阿莫西林Amoxicillin | R |
| 青霉素Penicillin | R |
| 头孢噻吩Cefthiophene | R |
| 头孢噻呋Ceftiofur | R |
| 头孢噻肟Cefotaxime | I |
| 链霉素Streptomycin | S |
| 庆大霉素Gentamicin | R |
| 阿米卡星Amikacin | R |
| 卡那霉素Kanamycin | R |
| 壮观霉素Spectinomycin | R |
| 红霉素Erythromycin | R |
| 替米考星Tilmicosin | R |
| 强力霉素Doxycycline | R |
| 四环素Tetracycline | R |
| 氟苯尼考Florfenicol | I |
| 林可霉素Lincomycin | R |
| 复方新诺明Trimethoprim | R |
| 恩诺沙星Enrofloxacin | I |
| 环丙沙星Ciprofloxacin | S |
表3 大肠埃希菌分离菌株的药敏实验结果
Table 3 Susceptibility test results of isolated E. coli strain
| 药剂 Antimicrobial agent | 判定结果 Interpretation |
|---|---|
| 氨苄西林Ampicillin | R |
| 阿莫西林Amoxicillin | R |
| 青霉素Penicillin | R |
| 头孢噻吩Cefthiophene | R |
| 头孢噻呋Ceftiofur | R |
| 头孢噻肟Cefotaxime | I |
| 链霉素Streptomycin | S |
| 庆大霉素Gentamicin | R |
| 阿米卡星Amikacin | R |
| 卡那霉素Kanamycin | R |
| 壮观霉素Spectinomycin | R |
| 红霉素Erythromycin | R |
| 替米考星Tilmicosin | R |
| 强力霉素Doxycycline | R |
| 四环素Tetracycline | R |
| 氟苯尼考Florfenicol | I |
| 林可霉素Lincomycin | R |
| 复方新诺明Trimethoprim | R |
| 恩诺沙星Enrofloxacin | I |
| 环丙沙星Ciprofloxacin | S |
| 菌株类型 Strain type | 菌株名 Strain name | ZRP2 | ZRP3 | ZRP4 | ZRP5 |
|---|---|---|---|---|---|
| 标准菌株 | CVCC1495 | - | - | - | - |
| Standard | CVCC232 | + | + | - | - |
| strain | CVCC249 | - | - | - | + |
| EHEC | PARX | - | - | - | - |
| WZ01 | - | - | - | - | |
| EAEC | ZS185 | - | - | - | - |
| ZS85 | - | - | - | - | |
| EIEC | DC10 | + | + | - | - |
| DC16 | - | - | - | - | |
| DC23 | - | - | - | - | |
| FL15 | + | + | - | + | |
| TCQX | + | + | - | - | |
| EPEC | DCW | + | + | + | - |
| ZB16 | + | + | + | + | |
| ZHC1 | + | + | + | - | |
| ZHC2 | - | - | - | - | |
| ZK01 | - | - | - | + | |
| ZK02 | - | - | - | + | |
| ZK15 | - | - | - | + | |
| ZK16 | - | - | - | + | |
| ZK1901 | - | - | - | + | |
| ZK1902 | - | - | - | + | |
| ZK1903 | - | - | - | + | |
| ZX01 | + | + | - | - | |
| NPEC | JX03 | + | - | - | - |
| JX04 | - | - | - | - | |
| XCF1 | - | - | - | - | |
| XCF2 | + | + | - | - |
表4 噬菌体宿主谱测定
Table 4 Host ranges of isolated bacteriophages
| 菌株类型 Strain type | 菌株名 Strain name | ZRP2 | ZRP3 | ZRP4 | ZRP5 |
|---|---|---|---|---|---|
| 标准菌株 | CVCC1495 | - | - | - | - |
| Standard | CVCC232 | + | + | - | - |
| strain | CVCC249 | - | - | - | + |
| EHEC | PARX | - | - | - | - |
| WZ01 | - | - | - | - | |
| EAEC | ZS185 | - | - | - | - |
| ZS85 | - | - | - | - | |
| EIEC | DC10 | + | + | - | - |
| DC16 | - | - | - | - | |
| DC23 | - | - | - | - | |
| FL15 | + | + | - | + | |
| TCQX | + | + | - | - | |
| EPEC | DCW | + | + | + | - |
| ZB16 | + | + | + | + | |
| ZHC1 | + | + | + | - | |
| ZHC2 | - | - | - | - | |
| ZK01 | - | - | - | + | |
| ZK02 | - | - | - | + | |
| ZK15 | - | - | - | + | |
| ZK16 | - | - | - | + | |
| ZK1901 | - | - | - | + | |
| ZK1902 | - | - | - | + | |
| ZK1903 | - | - | - | + | |
| ZX01 | + | + | - | - | |
| NPEC | JX03 | + | - | - | - |
| JX04 | - | - | - | - | |
| XCF1 | - | - | - | - | |
| XCF2 | + | + | - | - |
| 噬菌体滴度 Bacteriophage titer/ (PFU·mL-1) | 细菌浓度 Bacteria concentration/ (CFU·mL-1) | 混合培养后噬菌体滴度 Bacteriophage titer after co-culture/(PFU·mL-1) | 噬菌体扩增比值 Bacteriophage amplification ratio | ||||||
|---|---|---|---|---|---|---|---|---|---|
| ZRP2 | ZRP3 | ZRP4 | ZRP5 | ZRP2 | ZRP3 | ZRP4 | ZRP5 | ||
| 1×109 | 1×108 | 9.31×1010 | 4.87×1010 | 4.15×109 | 3.72×1010 | 93.1 | 48.7 | 4.15 | 37.2 |
| 1×108 | 1×108 | 1.24×1011 | 5.53×1010 | 6.42×108 | 5.48×1010 | 1 240 | 553 | 6.42 | 548 |
| 1×107 | 1×108 | 1.61×1011 | 5.66×1010 | 1.23×108 | 1.35×1011 | 16 100 | 5 660 | 12.3 | 13 500 |
| 1×106 | 1×108 | 1.39×1011 | 4.11×1010 | 6.49×106 | 3.68×1011 | 139 000 | 41 000 | 6.49 | 368 000 |
| 1×105 | 1×108 | 6.11×1010 | 1.76×1010 | 5.45×105 | 1.55×109 | 611 000 | 176 000 | 5.45 | 15 540 |
| 1×104 | 1×108 | 5.96×108 | 2.89×108 | 4.79×104 | 7.24×107 | 59 600 | 28 900 | 4.79 | 7 240 |
表5 感染复数测定结果
Table 5 Multiplicity of infection of isolated bacteriophages
| 噬菌体滴度 Bacteriophage titer/ (PFU·mL-1) | 细菌浓度 Bacteria concentration/ (CFU·mL-1) | 混合培养后噬菌体滴度 Bacteriophage titer after co-culture/(PFU·mL-1) | 噬菌体扩增比值 Bacteriophage amplification ratio | ||||||
|---|---|---|---|---|---|---|---|---|---|
| ZRP2 | ZRP3 | ZRP4 | ZRP5 | ZRP2 | ZRP3 | ZRP4 | ZRP5 | ||
| 1×109 | 1×108 | 9.31×1010 | 4.87×1010 | 4.15×109 | 3.72×1010 | 93.1 | 48.7 | 4.15 | 37.2 |
| 1×108 | 1×108 | 1.24×1011 | 5.53×1010 | 6.42×108 | 5.48×1010 | 1 240 | 553 | 6.42 | 548 |
| 1×107 | 1×108 | 1.61×1011 | 5.66×1010 | 1.23×108 | 1.35×1011 | 16 100 | 5 660 | 12.3 | 13 500 |
| 1×106 | 1×108 | 1.39×1011 | 4.11×1010 | 6.49×106 | 3.68×1011 | 139 000 | 41 000 | 6.49 | 368 000 |
| 1×105 | 1×108 | 6.11×1010 | 1.76×1010 | 5.45×105 | 1.55×109 | 611 000 | 176 000 | 5.45 | 15 540 |
| 1×104 | 1×108 | 5.96×108 | 2.89×108 | 4.79×104 | 7.24×107 | 59 600 | 28 900 | 4.79 | 7 240 |
| [1] | GORDILLO ALTAMIRANO F L, BARR J J. Phage therapy in the postantibiotic era[J]. Clinical Microbiology Reviews, 2019, 32(2): e00066. |
| [2] |
LOC-CARRILLO C, ABEDON S T. Pros and cons of phage therapy[J]. Bacteriophage, 2011, 1(2): 111-114.
DOI URL |
| [3] |
GOLKAR Z, BAGASRA O, PACE D G. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis[J]. Journal of Infection in Developing Countries, 2014, 8(2): 129-136.
DOI URL |
| [4] |
CHATTERJEE A, DUERKOP B A. Beyond bacteria: bacteriophage-eukaryotic host interactions reveal emerging paradigms of health and disease[J]. Frontiers in Microbiology, 2018, 9: 1394.
DOI URL |
| [5] |
YAP M L, ROSSMANN M G. Structure and function of bacteriophage T4[J]. Future Microbiology, 2014, 9(12): 1319-1327.
DOI URL |
| [6] |
NILSSON A S. Phage therapy: constraints and possibilities[J]. Upsala Journal of Medical Sciences, 2014, 119(2): 192-198.
DOI URL |
| [7] |
LUZ MARÍA CHACÓN J, LIZETH TAYLOR C, CARMEN VALIENTE A, et al. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples[J]. Brazilian Journal of Microbiology, 2012, 43(4): 1319-1326.
DOI URL |
| [8] |
AL-MAMUN A, MILY A, SARKER P, et al. Treatment with phenylbutyrate in a pre-clinical trial reduces diarrhea due to enteropathogenic Escherichia coli: link to cathelicidin induction[J]. Microbes and Infection, 2013, 15(13): 939-950.
DOI URL |
| [9] | FARFÁN-GARCÍA A E, ARIZA-ROJAS S C, VARGAS-CÁRDENAS F A, et al. Virulence mechanisms of enteropathogenic Escherichia coli[J]. Revista Chilena De Infectologia, 2016, 33(4): 438-450. |
| [10] | SLATER S L, SÅGFORS A M, POLLARD D J, et al. The type Ⅲ secretion system of pathogenic Escherichia coli[J]. Current Topics in Microbiology and Immunology, 2018, 416: 51-72. |
| [11] | SLATER S L, SAGFORS A M, POLLARD D J, et al. The type Ⅲ secretion system of pathogenic Escherichia coli[M]// FRANKEL G, RON E Z. Escherichia coli, a versatile pathogen. Cham, Switzerland: Springer Cham, 2018. |
| [12] |
SOLANS L, ARNAL J L, SANZ C, et al. Rabbit enteropathies on commercial farms in the Iberian peninsula: etiological agents identified in 2018-2019[J]. Animals, 2019, 9(12): 1142.
DOI URL |
| [13] | HYMAN P, ABEDON S T. Bacteriophage host range and bacterial resistance[J]. Advances in Applied Microbiology, 2010, 70: 217-248. |
| [14] |
SKURNIK M, PAJUNEN M, KILJUNEN S. Biotechnological challenges of phage therapy[J]. Biotechnology Letters, 2007, 29(7): 995-1003.
DOI URL |
| [15] |
BRUTTIN A, BRÜSSOW H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(7): 2874-2878.
DOI URL |
| [16] | KORTRIGHT K E, CHAN B K, KOFF J L, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2): 219-232. |
| [17] |
SULAKVELIDZE A, ALAVIDZE Z, MORRIS J G JR. Bacteriophage therapy[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(3): 649-659.
DOI URL |
| [18] |
ZHANG J C, LI Z, CAO Z H, et al. Bacteriophages as antimicrobial agents against major pathogens in swine: a review[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 39.
DOI URL |
| [19] |
BRÜSSOW H. Phage therapy: the Escherichia coli experience[J]. Microbiology (Reading, England), 2005, 151(Pt 7): 2133-2140.
DOI URL |
| [20] |
CHIBANI-CHENNOUFI S, SIDOTI J, BRUTTIN A, et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(7): 2558-2569.
DOI URL |
| [21] |
TANJI Y, SHIMADA T, FUKUDOMI H, et al. Therapeutic use of phage cocktail for controlling Escherichia coli O157: H7 in gastrointestinal tract of mice[J]. Journal of Bioscience and Bioengineering, 2005, 100(3): 280-287.
DOI URL |
| [22] |
LIU N, LEWIS C, ZHENG W M, et al. Phage cocktail therapy: multiple ways to suppress pathogenicity[J]. Trends in Plant Science, 2020, 25(4): 315-317.
DOI URL |
| [1] | 邓玉莲, 谭琳, 牛丽, 卢前程, 周玲红, 李桂花, 胡秋龙. 一株茶根腐病拮抗真菌的筛选鉴定与生物学特性研究[J]. 浙江农业学报, 2025, 37(7): 1469-1480. |
| [2] | 沈国强, 汪明德, 关雅文, 武军, 王汉荣. 高粱弯孢叶斑病病原菌鉴定、生物学特性研究及防治药剂筛选[J]. 浙江农业学报, 2025, 37(7): 1492-1500. |
| [3] | 马献, 尤雨薇, 康娟, 王国琴, 郑蕊, 苏建宇, 岳思君. 枸杞采后致腐病原菌的分离鉴定与天然抑菌剂筛选[J]. 浙江农业学报, 2025, 37(6): 1327-1335. |
| [4] | 翁歆之, 刁奕昕, 贺洁, 刘莉, 沈海钰, 郭琦, 沈卫锋, 韩明明, 楼宝, 吕孙建. 弧菌噬菌体鸡尾酒制剂对凡纳滨对虾肠道微生物区系的影响[J]. 浙江农业学报, 2025, 37(5): 1045-1056. |
| [5] | 王超, 李艳杰, 牛芸, 温联好, 陈晶晶, 吴红芝, 杨玉勇, 吴艳迪. 月季黑斑病病原菌的生物学特性与品种抗性评价[J]. 浙江农业学报, 2025, 37(5): 1087-1096. |
| [6] | 巩鑫鑫, 刘瑞玲, 韩延超, 孟祥红, 郜海燕, 陈杭君. 四种食用菌采后主要病原菌的分离与鉴定[J]. 浙江农业学报, 2025, 37(2): 456-465. |
| [7] | 齐天鹏, 刘莉, 夏美文, 吕孙建, 徐海圣. 乳酸菌和噬菌体对中华鳖生理生化与肠道菌群的影响[J]. 浙江农业学报, 2025, 37(1): 39-48. |
| [8] | 罗芷涵, 刘朋飞, 于军, 齐鹤, 陈小光, 楼兵干. 国槐枝枯病病原菌鉴定及其生物学特性[J]. 浙江农业学报, 2024, 36(3): 579-588. |
| [9] | 郭伟娜, 陶晶, 何梦婷, 王紫苇, 马佰贺, 赵磊. 鸡源鼠伤寒沙门菌的分离鉴定、药敏试验与毒力基因检测[J]. 浙江农业学报, 2024, 36(2): 284-294. |
| [10] | 王士臻, 黄俊, 李明江, 黄英杰, 张娟. 浙江省桂花叶斑病的病原鉴定及生物学特性等相关研究[J]. 浙江农业学报, 2024, 36(12): 2763-2773. |
| [11] | 潘长漭, 王玉珊, 黄秋月, 何建清, 巴桑旺姆, 张格杰. 卷须猴头菌的鉴定及生物学特性研究[J]. 浙江农业学报, 2024, 36(10): 2229-2237. |
| [12] | 贾北平, 吕炫, 杨庆, 王一楠, 李皖萧, 解新迪, 朱英奇, 王蓓, 殷冬冬, 张云凯, 王晴, 王桂军. 安徽省5株新型鹅星状病毒的分离鉴定与遗传进化分析[J]. 浙江农业学报, 2023, 35(5): 1048-1057. |
| [13] | 冯连荣, 张妍, 赵鑫闻, 宋立志, 梁德军. 一株野生金针菇菌种的分离、鉴定与生物学特性研究[J]. 浙江农业学报, 2023, 35(5): 1088-1096. |
| [14] | 孙珊珊, 其美拉姆, 李强, 曾南方, 郑诚, 张白玉, 颜其贵. 表达PRRSV NADC30-like毒株GP5-M的重组伪狂犬病病毒的构建及其生物学特性探究[J]. 浙江农业学报, 2023, 35(11): 2555-2567. |
| [15] | 李旭东, 刘永涛, 杨先乐, 杨移斌, 艾晓辉. 蛙类歪头、破头与白眼综合征病原分析[J]. 浙江农业学报, 2022, 34(8): 1617-1625. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||