浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2555-2567.DOI: 10.3969/j.issn.1004-1524.20221629
孙珊珊1(), 其美拉姆2, 李强1, 曾南方3, 郑诚4, 张白玉1, 颜其贵1,*(
)
收稿日期:
2022-11-16
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
孙珊珊(1994—),女,河南开封人,硕士研究生,主要从事微生物与免疫研究。E-mail: 1281101296@qq.com
通讯作者:
* 颜其贵,E-mail: yanqigui@126.com
基金资助:
SUN Shanshan1(), CHEMI Lhamo2, LI Qiang1, ZENG Nanfang3, ZHENG Cheng4, ZHANG Baiyu1, YAN Qigui1,*(
)
Received:
2022-11-16
Online:
2023-11-25
Published:
2023-12-04
摘要:
为获得一株能够融合表达猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)GP5-M蛋白的重组伪狂犬病病毒PRV-GP5-M毒株,以猪伪狂犬病病毒(pseudorabies virus, PRV)变异株TK基因缺失株PRV FJ01/TK-为病毒载体,以gI/gE基因为插入靶点,利用同源重组技术和CRISPR/Cas9技术敲除gI/gE基因,并在gI/gE位置上插入CMV-GP5-M表达盒,经噬斑纯化,成功构建能够正确表达GP5-M蛋白重组病毒PRV-GP5-M。进一步对该毒株的稳定性、生长动力学、培养特性、安全性等生物学特性进行探究。结果表明,该重组毒株具有良好的遗传稳定性、安全性,易于增殖培养。研究结果为靶向PRRSV GP5与M蛋白生成新的PRRSV疫苗提供了新的线索,同时可为预防近些年流行的PRRSV NADC30-like毒株和PRV变异株的疫苗研发提供重要参考。
中图分类号:
孙珊珊, 其美拉姆, 李强, 曾南方, 郑诚, 张白玉, 颜其贵. 表达PRRSV NADC30-like毒株GP5-M的重组伪狂犬病病毒的构建及其生物学特性探究[J]. 浙江农业学报, 2023, 35(11): 2555-2567.
SUN Shanshan, CHEMI Lhamo, LI Qiang, ZENG Nanfang, ZHENG Cheng, ZHANG Baiyu, YAN Qigui. Construction and biological characteristics of a recombinant pseudorabies virus expressing GP5-M of PRRSV NADC30-like virus strain[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2555-2567.
引物名称 Primer name | 上游引物 Forward primer (5’→3’) | 下游引物 Reverse primer (5’→3’) | 产物长度 Product length/bp |
---|---|---|---|
gI/gE-Left | CCATGATTACGCCAAGCTTTTGCGTACGGCCTTGCTTACGGG | CCGTAATTGATTACTATTAATCGATGGaagcttctacggaccgggct | 1 351 |
gI/gE-eGFP | agcccggtccgtagaagcttCCATCGATTAATAGTAATCAATTACGG | aaacgtgtccatgtcgaaggCCTCTTGTACAGCTCGTCCATGC | 1 366 |
gI/gE-Right | GCATGGACGAGCTGTACAAGAGGccttcgacatggacacgttt | tgtaaaacgacggccagtgaattcGTGCCAGAGCGAGAGCGT | 1 402 |
GP5-M | tgaaccgtcagatccgctagcGCCACCATGCTGGGCAAG | ACGTGTCCATGTCGAAGGCCTTTACTTGGCGTACTTCACCAGGT | 1 221 |
表1 引物信息表
Table 1 Primers information
引物名称 Primer name | 上游引物 Forward primer (5’→3’) | 下游引物 Reverse primer (5’→3’) | 产物长度 Product length/bp |
---|---|---|---|
gI/gE-Left | CCATGATTACGCCAAGCTTTTGCGTACGGCCTTGCTTACGGG | CCGTAATTGATTACTATTAATCGATGGaagcttctacggaccgggct | 1 351 |
gI/gE-eGFP | agcccggtccgtagaagcttCCATCGATTAATAGTAATCAATTACGG | aaacgtgtccatgtcgaaggCCTCTTGTACAGCTCGTCCATGC | 1 366 |
gI/gE-Right | GCATGGACGAGCTGTACAAGAGGccttcgacatggacacgttt | tgtaaaacgacggccagtgaattcGTGCCAGAGCGAGAGCGT | 1 402 |
GP5-M | tgaaccgtcagatccgctagcGCCACCATGCTGGGCAAG | ACGTGTCCATGTCGAAGGCCTTTACTTGGCGTACTTCACCAGGT | 1 221 |
向导RNA SgRNA | 上游引物Forward primer(5’→3’) | 下游引物Reverse primer(5’→3’) |
---|---|---|
gI/gE-1 | CACCGGTGCACCACGAAGCCTTCCGCGG | AAACCCGCGGAAGGCTTCGTGGTGCACC |
gI/gE-2 | CACCGGGACGAGTTCAGCAGCGACGAGG | AAACCCTCGTCGCTGCTGAACTCGTCCC |
表2 SgRNA引物信息表
Table 2 The primers information of SgRNA
向导RNA SgRNA | 上游引物Forward primer(5’→3’) | 下游引物Reverse primer(5’→3’) |
---|---|---|
gI/gE-1 | CACCGGTGCACCACGAAGCCTTCCGCGG | AAACCCGCGGAAGGCTTCGTGGTGCACC |
gI/gE-2 | CACCGGGACGAGTTCAGCAGCGACGAGG | AAACCCTCGTCGCTGCTGAACTCGTCCC |
分组 Group | 数量 Number | 剂量 Dosage/(TCID50·mL-1) | |
---|---|---|---|
A(PRV-GP5-M) | A-1 | 6 | 104 |
A-2 | 6 | 105 | |
A-3 | 6 | 106 | |
B(PRV FJ01) | B-1 | 6 | 104 |
B-2 | 6 | 105 | |
B-3 | 6 | 106 | |
C(DMEM) | 6 | 100 μL |
表3 动物实验方案
Table 3 Animal experimental scheme
分组 Group | 数量 Number | 剂量 Dosage/(TCID50·mL-1) | |
---|---|---|---|
A(PRV-GP5-M) | A-1 | 6 | 104 |
A-2 | 6 | 105 | |
A-3 | 6 | 106 | |
B(PRV FJ01) | B-1 | 6 | 104 |
B-2 | 6 | 105 | |
B-3 | 6 | 106 | |
C(DMEM) | 6 | 100 μL |
图3 gI/gE转移载体片段扩增 A,M为DL2000 DNA分子量标准,1、2、3分别为片段gI/gE-Left、gI/gE-eGFP、gI/gE-Right。B,M为DL2000分子量标准,1为GP5-M片段。
Fig.3 PCR amplification of gI/gE transfer vector A, M was DL2000 DNA marker, 1 was gI/gE-Left, 2 was gI/gE-eGFP, 3 was gI/gE-Right. B, M was DL2000 marker, 1 was GP5-M.
图4 Western blot鉴定转移载体中GP5-M蛋白的表达 M为蛋白分子量标准;1为转移载体pUC19-gI/gE/GP5-M。
Fig.4 Western blot analysis of the GP5-M protein expressed by pUC19-gI/gE/GP5-M M, Protein marker; 1, Transfer vector pUC19-gI/gE/GP5-M.
图5 SgRNA载体构建鉴定结果 M为DL2000 DNA分子量标准,1、2分别为pX459-gIgE-SgRNA1、pX459-gIgE-SgRNA2的SgRNA鉴定结果。
Fig.5 Detection results of SgRNA vectors M, DL2000 DNA marker,1 and 2 were pX459-gIgE-SgRNA1 and pX459-gIgE-SgRNA2,respectively.
图7 PRV-GP5-M鉴定结果 M为DL5000 DNA分子量标准;1、2分别为PRV PRV FJ01、PRV-GP5-M的gI/gE鉴定引物PCR结果;3为PRV-GP5-M的GP5-M基因引物鉴定结果。
Fig.7 Detection results of PRV-GP5-M M, DL5000 DNA marker; 1, PCR result of gI/gE identification primers of PRV FJ01; 2, PCR result of gI/gE identification primers of PRV-GP5-M; 3, Identification result of GP5-M gene primers of PRV-GP5-M.
图8 Western blot鉴定重组病毒中GP5-M蛋白的表达 M为蛋白分子量标准;1、2分别为PRV-GP5-M、PRV FJ01。
Fig.8 Western blot analysis of the GP5-M protein expressed by PRV-GP5-M M, Protein marker; 1, PRV-GP5-M; 2, PRV FJ01.
图10 重组病毒的遗传稳定性 A,PCR检测重组病毒PRV-GP5-M的遗传稳定性;M1为DL 2000 DNA分子量标准,F5、F10、F15分别为重组病毒PRV-GP5-M第5、10、15代GP5-M基因检测结果。B,第5、10、15代中GP5-M基因同源性比对结果。C,Western blot检测F5、F10、F15中GP5-M蛋白的表达;M2为蛋白分子量标准,F5、F10、F15分别为重组病毒PRV-GP5-M第5、10、15代中GP5-M蛋白表达结果。
Fig.10 Genetic stability of recombinant virus A, PCR detection for genetic stability of recombinant virus; M1, DL 2000 DNA maker; F5, F10 and F15 were the GP5-M gene detection results of the 5th, 10th and 15th generations of the recombinant virus PRV-GP5-M, respectively. B, Homology comparison of GP5-M gene in the 5th, 10th and 15th generation. C, The expression of GP5-M protein in recombinant virus PRV-GP5-M was detected by Western blot; M2, Protein marker, F5, F10, F15 were the expression results of the 5th, 10th, 15th generation GP5-M protein in the recombinant virus PRV-GP5-M.
图12 重组病毒在不同细胞中的培养特性(20×) A、B、C、D、E、F分别为重组病毒PRV-GP5-M与PRV FJ01在IPEC、Marc145、MDCK、PK15、ST、Vero上的培养特性。
Fig.12 Culture characteristics of recombinant virus in different cells (20×) A, B, C, D, E and F were the culture characteristics of recombinant virus PRV-GP5-M and PRV FJ01 on IPEC, Marc145, MDCK, PK15, ST and Vero, respectively.
图13 两株病毒在不同细胞上的TCID50 ****,P <0.001;NS,不显著。下同。
Fig.13 TCID50 of recombinant viruses PRV-GP5-M and PRV FJ01 on different cells ****, P <0.001; NS, Not significant. The same as below.
图14 不同器官中的病毒载量 A,荧光定量PCR标准曲线;B,荧光定量PCR熔解曲线;C,不同器官中病毒核酸拷贝数,****, P<0.001。
Fig.14 Viral load in different organs A, Standard curve of fluorescent quantitative PCR. B, Melting curve of fluorescent quantitative PCR. C, Virus nucleic acid copy number in different organs, **** indicated P<0.001.
[1] | ALVAREZ J, VALDES-DONOSO P, TOUSIGNANT S, et al. Novel analytic tools for the study of porcine reproductive and respiratory syndrome virus (PRRSv) in endemic settings: lessons learned in the U.S[J]. Porcine Health Management, 2016, 2(1): 1-9. |
[2] | AMONSIN A, KEDKOVID R, PURANAVEJA S, et al. Comparative analysis of complete nucleotide sequence of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Thailand (US and EU genotypes)[J]. Virology Journal, 2009, 6(1): 1-10. |
[3] | WANG H W, CUI X Y, CAI X H, et al. Recombination in positive-strand RNA viruses[J]. Frontiers in Microbiology, 2022, 13: 870759. |
[4] | TIAN K G. NADC30-like porcine reproductive and respiratory syndrome in China[J]. The Open Virology Journal, 2017, 11: 59-65. |
[5] | BAI X F, WANG Y Z, XU X, et al. Commercial vaccines provide limited protection to NADC30-like PRRSV infection[J]. Vaccine, 2016, 34(46): 5540-5545. |
[6] | LI G P, LIU L, XU B J, et al. Displaying epitope B and epitope 7 of porcine reproductive and respiratory syndrome virus on virus like particles of porcine circovirus type 2 provides partial protection to pigs[J]. Journal of Veterinary Medical Science, 2021, 83(8): 1263-1272. |
[7] | WEI X, LI R, QIAO S L, et al. Porcine reproductive and respiratory syndrome virus utilizes viral apoptotic mimicry as an alternative pathway to infect host cells[J]. Journal of Virology, 2020, 94(17): e00709. |
[8] | REN X F, WANG M C, YIN J C, et al. Heterologous expression of fused genes encoding the glycoprotein 5 from PRRSV: a way for producing functional protein in prokaryotic microorganism[J]. Journal of Biotechnology, 2010, 147(2): 130-135. |
[9] | TANG D Y, LIU J, LI C Y, et al. Positive effects of porcine IL-2 and IL-4 on virus-specific immune responses induced by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 DNA vaccine in swine[J]. Journal of Veterinary Science, 2014, 15(1): 99-109. |
[10] | DOKLAND T. The structural biology of PRRSV[J]. Virus Research, 2010, 154(1/2): 86-97. |
[11] | DU L P, YU Z Y, PANG F J, et al. Targeted delivery of GP5 antigen of PRRSV to M cells enhances the antigen-specific systemic and mucosal immune responses[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 7. |
[12] | ZHANG K S, HUANG J, WANG Q G, et al. Recombinant pseudorabies virus expressing P12A and 3C of FMDV can partially protect piglets against FMDV challenge[J]. Research in Veterinary Science, 2011, 91(1): 90-94. |
[13] | ZHANG L, RUAN K, SANG G, et al. TK-deleted pseudorabies virus retains high pathogenicity in rats[J]. Journal of Veterinary Research, 2021, 65(4): 401-405. |
[14] | DONG B, ZARLENGA D S, REN X F. An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines[J]. Journal of Immunology Research, 2014, 2014: 824630. |
[15] | TONG W, ZHENG H, LI G X, et al. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV[J]. Antiviral Research, 2020, 173: 104652. |
[16] | CHEN Y, GUO W Z, XU Z W, et al. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: immunogenicity and protective efficacy in swine[J]. Virology Journal, 2011, 8: 307. |
[17] | TIAN Z J, ZHOU G H, ZHENG B L, et al. A recombinant pseudorabies virus encoding the HA gene from H3N2 subtype swine influenza virus protects mice from virulent challenge[J]. Veterinary Immunology and Immunopathology, 2006, 111(3/4): 211-218. |
[18] | AN T Q, PENG J M, TIAN Z J, et al. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012[J]. Emerging Infectious Diseases, 2013, 19(11): 1749-1755. |
[19] | LIU Q Y, WANG X J, XIE C H, et al. A novel human acute encephalitis caused by pseudorabies virus variant strain[J]. Clinical Infectious Diseases, 2021, 73(11): e3690-e3700. |
[20] | FENG Z H, CHEN J H, LIANG W, et al. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice[J]. Virology Journal, 2020, 17(1): 180. |
[21] | WANG F S, ZUMBRUN E E, HUANG J L, et al. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons[J]. Virology, 2010, 405(2): 269-279. |
[22] | LI X, CHEN S, ZHANG L Y, et al. Mutation and interaction analysis of the glycoprotein D and L and thymidine kinase of pseudorabies virus[J]. International Journal of Molecular Sciences, 2022, 23(19): 11597. |
[23] | SUN Y Z, ZHAO L, FU Z F. Effective cross-protection of a lyophilized live gE/gI/TK-deleted pseudorabies virus (PRV) vaccine against classical and variant PRV challenges[J]. Veterinary Microbiology, 2022, 267: 109387. |
[24] | VIDA F, IRENA O, JERNEJ O, et al. CRISPRa-mediated FOXP3 gene upregulation in mammalian cells[J]. Cell & Bioscience, 2019, 9(1): 93. |
[25] | JINEK M, JIANG F G, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997. |
[26] | VOYTAS D F, GAO C X. Precision genome engineering and agriculture: opportunities and regulatory challenges[J]. PLoS Biology, 2014, 12(6): e1001877. |
[1] | 冯连荣, 张妍, 赵鑫闻, 宋立志, 梁德军. 一株野生金针菇菌种的分离、鉴定与生物学特性研究[J]. 浙江农业学报, 2023, 35(5): 1088-1096. |
[2] | 丁兆雪, 王佳洁, 沈中浩, 周晓龙, 杨松柏, 金航峰, 赵阿勇, 汪涵. 猪miR-22前体上游序列突变的PK15细胞系构建[J]. 浙江农业学报, 2022, 34(9): 1849-1855. |
[3] | 王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608. |
[4] | 偶春, 张敏, 丁霖, 姚侠妹, 王泽璐, 彭城, 徐俊锋. CRISPR/Cas9基因编辑技术在植物中的应用与政策监管[J]. 浙江农业学报, 2022, 34(8): 1806-1814. |
[5] | 杨玲, 沙楠景, 潘鹏举, 吴伯志. 云南地区铁线莲叶枯病病原菌的鉴定和主要生物学特性[J]. 浙江农业学报, 2022, 34(7): 1449-1456. |
[6] | 陈润臣, 王艺凝, 刘潇文, 王红艳, 丁强, 王鸿磊. 一株野生多脂鳞伞的鉴定、人工栽培与营养成分分析[J]. 浙江农业学报, 2021, 33(12): 2330-2338. |
[7] | 李戌清, 严建立, 阮松林. 三叶青炭疽病病原菌的鉴定与生物学特性[J]. 浙江农业学报, 2020, 32(11): 2009-2019. |
[8] | 李戌清, 张敬泽, 张雅, 吴根良. 浙江省绍兴市茄子黄萎病菌菌株致病型鉴定及其生物学特性研究[J]. 浙江农业学报, 2019, 31(5): 784-789. |
[9] | 周会明, 张焱珍, 柴红梅, 杨荣情, 谭莹, 张萍萍, 白玉英, 赵一莲, 金玉洁. 一株临沧野生黄鸡?的鉴定与生长条件研究[J]. 浙江农业学报, 2019, 31(10): 1655-1662. |
[10] | 马晓平, 杨秋霞, 俞演, 李德生, 王承东, 凌珊珊, 古玉. 大熊猫源枝孢样枝孢霉野生株(Z20)与突变株(Zt)部分生物学特性及药敏试验比较[J]. 浙江农业学报, 2018, 30(8): 1328-1335. |
[11] | 雷雪平, 耿毅, 余泽辉, 郑李平, 曹师琪, 黄小丽, 陈德芳, 欧阳萍, 刘恺睿. 棘胸蛙脑膜炎败血伊丽莎白菌的分离鉴定及其感染的病理损伤[J]. 浙江农业学报, 2018, 30(3): 371-377. |
[12] | 马晓平, 杨天意, 俞演, 张志和, 王承东, 古玉. 大熊猫阴道源乳酸杆菌生物学特性研究[J]. 浙江农业学报, 2017, 29(7): 1093-1102. |
[13] | 原文霞, 王栩鸣, 李冬月, 周洁, 严成其, 陈剑平. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5): 685-693. |
[14] | 沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 浙江农业学报, 2017, 29(2): 177-185. |
[15] | 谢放,张育,朱玉兰. 一株冬虫夏草相关菌株的生物学特性[J]. 浙江农业学报, 2016, 28(2): 306-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||