浙江农业学报 ›› 2024, Vol. 36 ›› Issue (2): 284-294.DOI: 10.3969/j.issn.1004-1524.20230168
        
               		郭伟娜1,2(
), 陶晶1, 何梦婷1, 王紫苇1, 马佰贺1, 赵磊1,2
                  
        
        
        
        
    
收稿日期:2023-02-15
									
				
									
				
									
				
											出版日期:2024-02-25
									
				
											发布日期:2024-03-05
									
			作者简介:郭伟娜(1982—),女,河南内黄人,博士研究生,副教授,主要从事兽医微生物的分离鉴定及致病性研究。E-mail:weina0925@126.com
				
							基金资助:
        
               		GUO Weina1,2(
), TAO Jing1, HE Mengting1, WANG Ziwei1, MA Baihe1, ZHAO Lei1,2
			  
			
			
			
                
        
    
Received:2023-02-15
									
				
									
				
									
				
											Online:2024-02-25
									
				
											Published:2024-03-05
									
			摘要:
鼠伤寒沙门菌是一种重要的人兽共患病病原,不仅影响养禽业的健康发展,还对禽类产品安全构成严重威胁,本研究主要是对鸡源鼠伤寒沙门菌进行分离鉴定、药敏试验和毒力基因的测定。首先采集病死产蛋鸡的脾脏组织进行分离培养和染色镜检,以及16S rRNA 基因的PCR鉴定,然后用圆纸片扩散法测定分离株对26种药物的敏感性,用PCR方法检测分离株的28个毒力基因。结果显示,分离株在普通营养琼脂和血琼脂培养基上形成灰白色菌落,在麦康凯培养基上为无色菌落,在BS培养基上为黑色带金属光泽的菌落;染色镜检结果显示分离株为革兰阴性的红色短杆菌;16S rRNA基因测序结果显示,分离株与鼠伤寒沙门菌OLF-FSR1-WB-Sparrow-ST-87的相似性为99.86%,与10个鼠伤寒沙门菌参考菌株的同源性介于99.5%~100%;药敏试验结果表明,分离株对环丙沙星最为敏感,抑菌圈直径达30 mm;除sseC基因未检测出外,其余27个毒力基因的测序结果与参考菌株对应毒力基因的相似性介于98.58%~100%。本研究成功从病死产蛋鸡分离鉴定出一株鼠伤寒沙门菌菌株FY2021,为深入研究鼠伤寒沙门菌的致病机理和禽源沙门菌病的防控提供参考依据。
中图分类号:
郭伟娜, 陶晶, 何梦婷, 王紫苇, 马佰贺, 赵磊. 鸡源鼠伤寒沙门菌的分离鉴定、药敏试验与毒力基因检测[J]. 浙江农业学报, 2024, 36(2): 284-294.
GUO Weina, TAO Jing, HE Mengting, WANG Ziwei, MA Baihe, ZHAO Lei. Isolation, identification, antimicrobial susceptibility test and virulence genes detection of Salmonella typhimurium from chicken[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 284-294.
| 基因名称 Gene name  |  引物序列(5'→3') Primer sequence (5'→3')  |  产物大小 Size/bp  | 
|---|---|---|
| invA | Up: GTGAAATTATCGCCACGTTCGGGCAA Down: TCATCGCACCGTCAAAGGAACC  |  284 | 
| spvR | Up: AGGAAATCGGACCTACGG Down: TAACATCGCCAGCCCTTG  |  473 | 
| spvA | Up: GCTAACTGTCGGGCAAAG Down: GGACAATGGCACGAACCT  |  432 | 
| spvB | Up: CCTGATGTTCCACCACTTTC Down: ATGCCTTATCTGGCGATGT  |  590 | 
| spvC | Up: AAGGTCGTTCAACAAGCC Down: CATTTCACCACCATCACG  |  252 | 
| spvD | Up: CCCCTGATGATGAGAAGT Down: ACAGTGGGATTAGACAGC  |  316 | 
| sseC | Up: ATGAATCGAATTCACAGTAA Down: TTAAGCGCGATAGCCAGCTA  |  1 455 | 
| sseD | Up: ATGGAAGCGAGTAACGTAGC Down: TTACCTCGTTAATGCCCGGA  |  588 | 
| sseE | Up: ATGGTGCAAGAAATAGAGCA Down: TTAAAAACGTCGCTGGATAA  |  417 | 
| sseL | Up: CTATCCTATTGGGCTTAT Down: GTTGGGTACATTGTTCTG  |  304 | 
| mogA | Up: ATTGGCTTAGTTTCTATCTCCG Down: CCTTCCAGCGTTTCTTTGA  |  419 | 
| mgtC | Up: CGACGATCATTATTCTTTGC Down: GACCGAACCTAACCCTTGT  |  200 | 
| bcfA | Up: CTTTGGCGGAATGTTGTC Down: CTGGCTGGTCTGAGTATCG  |  235 | 
| araB | Up: AGGTAGACGTGCCGATGACTT Down: CGAATGCGATGTTTGTGCT  |  558 | 
| invJ | Up: TCGGCAGTGGGAAAAATA Down: AAGGCGTTCGTAAAGAGG  |  232 | 
| sscA | Up: ATGAAAAAAGACCCGACCTA Down: TTAGCTCCTGTCAGAAAGTT  |  474 | 
| virK | Up: CGCCTTGAGTATGTTTGT Down: ATGGGAAGTTCAGGTATC  |  376 | 
| sipA | Up: TTCCCCTTTTAGCCT Down: ACCTCCACACCGTTC  |  243 | 
| sopA | Up: ACCTGCCGACTGGGCTAAG Down: ACGAGGGCTGTTGTTGTGT  |  347 | 
| ssaB | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG  |  382 | 
| misL | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG  |  458 | 
| orf319 | Up: GTATCGGACAAAGAAGG Down: ATGAAAAGGGTAACAGG  |  323 | 
| pipC | Up: CGCCTCTTCTTCGGT Down: TATGCCATTGCCTGA  |  145 | 
| SPI-1 | Up: ACATCGACAGACGTAAGGAGG Down: CCGCCAAACCTAAAACCAGC  |  979 | 
| SPI-2 | Up: TTGTCCGCCAACTCCTCTTC Down: TTACGTCTTATTTTCGGCACC  |  440 | 
| SPI-3 | Up: ATTGGGAGTTGATTTATACGC Down: TGGGATTGGCTTTCTGGGG  |  210 | 
| SPI-4 | Up: ATTCAGTGGTTCATGGTCAGG Down: TTAAAGAACGGGTGCCATCC  |  282 | 
| SPI-5 | Up: CCAGCTCATTAACACCCACAT Down: CGGGCATCACTATACCAACAC  |  550 | 
表1 引物序列及目的片段大小
Table 1 The primer sequences and size of target fragments
| 基因名称 Gene name  |  引物序列(5'→3') Primer sequence (5'→3')  |  产物大小 Size/bp  | 
|---|---|---|
| invA | Up: GTGAAATTATCGCCACGTTCGGGCAA Down: TCATCGCACCGTCAAAGGAACC  |  284 | 
| spvR | Up: AGGAAATCGGACCTACGG Down: TAACATCGCCAGCCCTTG  |  473 | 
| spvA | Up: GCTAACTGTCGGGCAAAG Down: GGACAATGGCACGAACCT  |  432 | 
| spvB | Up: CCTGATGTTCCACCACTTTC Down: ATGCCTTATCTGGCGATGT  |  590 | 
| spvC | Up: AAGGTCGTTCAACAAGCC Down: CATTTCACCACCATCACG  |  252 | 
| spvD | Up: CCCCTGATGATGAGAAGT Down: ACAGTGGGATTAGACAGC  |  316 | 
| sseC | Up: ATGAATCGAATTCACAGTAA Down: TTAAGCGCGATAGCCAGCTA  |  1 455 | 
| sseD | Up: ATGGAAGCGAGTAACGTAGC Down: TTACCTCGTTAATGCCCGGA  |  588 | 
| sseE | Up: ATGGTGCAAGAAATAGAGCA Down: TTAAAAACGTCGCTGGATAA  |  417 | 
| sseL | Up: CTATCCTATTGGGCTTAT Down: GTTGGGTACATTGTTCTG  |  304 | 
| mogA | Up: ATTGGCTTAGTTTCTATCTCCG Down: CCTTCCAGCGTTTCTTTGA  |  419 | 
| mgtC | Up: CGACGATCATTATTCTTTGC Down: GACCGAACCTAACCCTTGT  |  200 | 
| bcfA | Up: CTTTGGCGGAATGTTGTC Down: CTGGCTGGTCTGAGTATCG  |  235 | 
| araB | Up: AGGTAGACGTGCCGATGACTT Down: CGAATGCGATGTTTGTGCT  |  558 | 
| invJ | Up: TCGGCAGTGGGAAAAATA Down: AAGGCGTTCGTAAAGAGG  |  232 | 
| sscA | Up: ATGAAAAAAGACCCGACCTA Down: TTAGCTCCTGTCAGAAAGTT  |  474 | 
| virK | Up: CGCCTTGAGTATGTTTGT Down: ATGGGAAGTTCAGGTATC  |  376 | 
| sipA | Up: TTCCCCTTTTAGCCT Down: ACCTCCACACCGTTC  |  243 | 
| sopA | Up: ACCTGCCGACTGGGCTAAG Down: ACGAGGGCTGTTGTTGTGT  |  347 | 
| ssaB | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG  |  382 | 
| misL | Up: ATGTCTGAGGAGGGAT Down: GTTTATGGTGATTGCG  |  458 | 
| orf319 | Up: GTATCGGACAAAGAAGG Down: ATGAAAAGGGTAACAGG  |  323 | 
| pipC | Up: CGCCTCTTCTTCGGT Down: TATGCCATTGCCTGA  |  145 | 
| SPI-1 | Up: ACATCGACAGACGTAAGGAGG Down: CCGCCAAACCTAAAACCAGC  |  979 | 
| SPI-2 | Up: TTGTCCGCCAACTCCTCTTC Down: TTACGTCTTATTTTCGGCACC  |  440 | 
| SPI-3 | Up: ATTGGGAGTTGATTTATACGC Down: TGGGATTGGCTTTCTGGGG  |  210 | 
| SPI-4 | Up: ATTCAGTGGTTCATGGTCAGG Down: TTAAAGAACGGGTGCCATCC  |  282 | 
| SPI-5 | Up: CCAGCTCATTAACACCCACAT Down: CGGGCATCACTATACCAACAC  |  550 | 
																													图1 分离菌在不同培养基上的培养特性 A,普通营养琼脂培养基;B,麦康凯琼脂培养基;C,血琼脂培养基;D,BS培养基。
Fig.1 Culture characteristics of isolated bacteria on different mediums A, The ordinary agar; B, MacConkey agar; C, Blood agar; D, BS medium.
																													图3 分离菌16S rRNA基因扩增结果 M,DL2 000 DNA marker;1,阴性对照;2,分离菌。
Fig.3 Amplification results of 16S rRNA gene of isolated bacteria M, DL2 000DNA marker; 1, Negative control; 2, the isolated bacteria.
| GenBank登录号 GenBank accession number  |  菌株 Strain  |  地区 Country  |  来源 Isolation source  | 
|---|---|---|---|
| CP051276 | OLF-FSR1-WB-Sparrow-ST-87 | 加拿大Canada | 麻雀Sparrow | 
| CP047323 | RM13672 | 美国USA | 人类粪便Feces of homo sapiens | 
| MK795389 | LC04 | 中国China | 生物资源中心Biological Resource Center | 
| MK795388 | LC03 | 中国China | 生物资源中心Biological Resource Center | 
| MK795387 | LC02 | 中国China | 生物资源中心Biological Resource Center | 
| MK795386 | LC01 | 中国China | 生物资源中心Biological Resource Center | 
| CP034230 | ATCC14028 | 美国USA | 生物资源中心Biological Resource Center | 
| CP074663 | CFSAN008081 | 美国USA | 鸡Chicken | 
| CP028199 | CFSAN018746 | 美国USA | 生物资源中心Biological Resource Center | 
| NR074910 | LT2 | 美国American | 生物资源中心Biological Resource Center | 
表2 肠道沙门菌参考菌株信息
Table 2 Reference strain information of Salmonella enterica
| GenBank登录号 GenBank accession number  |  菌株 Strain  |  地区 Country  |  来源 Isolation source  | 
|---|---|---|---|
| CP051276 | OLF-FSR1-WB-Sparrow-ST-87 | 加拿大Canada | 麻雀Sparrow | 
| CP047323 | RM13672 | 美国USA | 人类粪便Feces of homo sapiens | 
| MK795389 | LC04 | 中国China | 生物资源中心Biological Resource Center | 
| MK795388 | LC03 | 中国China | 生物资源中心Biological Resource Center | 
| MK795387 | LC02 | 中国China | 生物资源中心Biological Resource Center | 
| MK795386 | LC01 | 中国China | 生物资源中心Biological Resource Center | 
| CP034230 | ATCC14028 | 美国USA | 生物资源中心Biological Resource Center | 
| CP074663 | CFSAN008081 | 美国USA | 鸡Chicken | 
| CP028199 | CFSAN018746 | 美国USA | 生物资源中心Biological Resource Center | 
| NR074910 | LT2 | 美国American | 生物资源中心Biological Resource Center | 
| 抗菌药物 Drug  |  抑菌圈/敏感性 Inhibition zone/ sensitivity  |  抗菌药物 Drug  |  抑菌圈/敏感性 Inhibition zone/ sensitvity  | ||
|---|---|---|---|---|---|
| 青霉素类 | 氨苄西林Ampicillin | 14/I | 喹诺酮类 | 氧氟沙星Ofloxacin | 28/S | 
| Penicillins | 苯唑西林Oxacillin | 0/R | Quinolones | 环丙沙星Ciprofloxacin | 30/S | 
| 羧苄西林Carbenicillin | 25/S | 诺氟沙星Norfloxacin | 25/S | ||
| 氨基糖苷类 | 新霉素Neomycin | 14/I | 恩诺沙星Enrofloxacin | 26/S | |
| Aminoglycosides | 卡那霉素Kanamycins | 18/I | 氯霉素类Chloramphenicol | 氟苯尼考Florfenicol | 26/S | 
| 丁胺卡那霉素Amikacin | 18/S | 四环素类Tetracyclines | 多西环素Doxycycline | 18/S | |
| 奈替米星Netilmicin | 24/S | 多肽类Polypeptides | 多粘菌素B Polymyxin B | 12/I | |
| 头孢菌素类 | 头孢哌酮Cefoperazone | 22/S | 万古霉素Vancomycin | 0/R | |
| Cephalosporins | 头孢西丁Cefoxitin | 28/S | 磺胺类Sulfonamides | 复方新诺明Trimethoprim/sulfamethoxazole | 0/R | 
| 头孢氨苄Cephalexin | 12/I | 大环内酯类Macrolides | 红霉素Erythromycin | 0/R | |
| 头孢噻肟Cefotaxime | 28/S | 麦迪霉素Midecamycin | 0/R | ||
| 头孢呋辛Cefuroxime | 15/I | 林可酰胺类 | 林可霉素Lincomycin | 0/R | |
| 头孢曲松Ceftriaxone | 24/S | Lincosamides | 克林霉素Clindamycin | 0/R | |
表3 抑菌圈直径测定结果
Table 3 Results of bacteriostatic zone diameter mm
| 抗菌药物 Drug  |  抑菌圈/敏感性 Inhibition zone/ sensitivity  |  抗菌药物 Drug  |  抑菌圈/敏感性 Inhibition zone/ sensitvity  | ||
|---|---|---|---|---|---|
| 青霉素类 | 氨苄西林Ampicillin | 14/I | 喹诺酮类 | 氧氟沙星Ofloxacin | 28/S | 
| Penicillins | 苯唑西林Oxacillin | 0/R | Quinolones | 环丙沙星Ciprofloxacin | 30/S | 
| 羧苄西林Carbenicillin | 25/S | 诺氟沙星Norfloxacin | 25/S | ||
| 氨基糖苷类 | 新霉素Neomycin | 14/I | 恩诺沙星Enrofloxacin | 26/S | |
| Aminoglycosides | 卡那霉素Kanamycins | 18/I | 氯霉素类Chloramphenicol | 氟苯尼考Florfenicol | 26/S | 
| 丁胺卡那霉素Amikacin | 18/S | 四环素类Tetracyclines | 多西环素Doxycycline | 18/S | |
| 奈替米星Netilmicin | 24/S | 多肽类Polypeptides | 多粘菌素B Polymyxin B | 12/I | |
| 头孢菌素类 | 头孢哌酮Cefoperazone | 22/S | 万古霉素Vancomycin | 0/R | |
| Cephalosporins | 头孢西丁Cefoxitin | 28/S | 磺胺类Sulfonamides | 复方新诺明Trimethoprim/sulfamethoxazole | 0/R | 
| 头孢氨苄Cephalexin | 12/I | 大环内酯类Macrolides | 红霉素Erythromycin | 0/R | |
| 头孢噻肟Cefotaxime | 28/S | 麦迪霉素Midecamycin | 0/R | ||
| 头孢呋辛Cefuroxime | 15/I | 林可酰胺类 | 林可霉素Lincomycin | 0/R | |
| 头孢曲松Ceftriaxone | 24/S | Lincosamides | 克林霉素Clindamycin | 0/R | |
																													图6 毒力基因的PCR扩增结果 M,DL2 000 DNA marker ;1~12,分别为毒力基因invA、spvR、spvA、spvB、spvC、spvD、sseE、sseL、mogA、mgtC、bcfA 和araB;13~28,分别为毒力基因invJ、sscA、sseC、sseD、virK、sipA、sopA、ssaB、misL、ofr319、pipC、SPI-1、SPI-2、SPI-3、SPI-4 和SPI-5。
Fig.6 PCR amplification of virulence genes M, DL2 000 DNA marker;1-12, genes of invA, spvR, spvA, spvB, spvC, spvD, sseE, sseL, mogA, mgtC, bcfA and araB respectively.13-28, genes of invJ, sscA, sseC, sseD, virK, sipA, sopA, ssaB, misL, ofr319, pipC, SPI-1, SPI-2, SPI-3, SPI-4 and SPI-5, respectively.
| 基因名称 Gene name  |  菌株 Strain  |  GenBank登录号 GenBank accession number  |  同源性 Identity/%  | 
|---|---|---|---|
| invA | 16A242 | CP020922 | 98.95 | 
| spvR | FDAARGOS-711 | CP055131 | 99.56 | 
| spvA | FDAARGOS-711 | CP055131 | 99.08 | 
| spvB | FDAARGOS-687 | CP046282 | 99.48 | 
| spvC | 07-0715 | CP053399 | 99.21 | 
| spvD | FDAARGOS-711 | CP055131 | 99.06 | 
| sseE | FDAARGOS-711 | CP055130 | 99.29 | 
| sseL | FDAARGOS-707 | CP046279 | 100 | 
| mogA | FDAARGOS-711 | CP055130 | 98.58 | 
| mgtC | FDAARGOS-711 | CP055130 | 100 | 
| bcfA | FDAARGOS-711 | CP055130 | 100 | 
| araB | FDAARGOS-711 | CP055130 | 99.81 | 
| invJ | FDAARGOS-711 | CP055130 | 99.57 | 
| sscA | SL7207 | CP053865 | 99.16 | 
| sseD | 16A242 | CP020922 | 99.49 | 
| virK | 16A242 | CP020922 | 100 | 
| sipA | FDAARGOS-711 | CP055130 | 99.18 | 
| sopA | SL7207 | CP053865 | 99.71 | 
| ssaB | FDAARGOS-711 | CP055130 | 99.73 | 
| misL | FDAARGOS-711 | CP055130 | 99.77 | 
| orf319 | SL7207 | CP053865 | 98.77 | 
| pipC | FDAARGOS-711 | CP055130 | 100 | 
| SPI-1 | FDAARGOS-711 | CP055130 | 100 | 
| SPI-2 | FDAARGOS-711 | CP055130 | 100 | 
| SPI-3 | FDAARGOS-711 | CP055130 | 99.07 | 
| SPI-4 | FDAARGOS-711 | CP055130 | 98.94 | 
| SPI-5 | FDAARGOS-711 | CP055130 | 100 | 
表4 毒力基因相似性比对结果
Table 4 The identity comparsion of virluence genes
| 基因名称 Gene name  |  菌株 Strain  |  GenBank登录号 GenBank accession number  |  同源性 Identity/%  | 
|---|---|---|---|
| invA | 16A242 | CP020922 | 98.95 | 
| spvR | FDAARGOS-711 | CP055131 | 99.56 | 
| spvA | FDAARGOS-711 | CP055131 | 99.08 | 
| spvB | FDAARGOS-687 | CP046282 | 99.48 | 
| spvC | 07-0715 | CP053399 | 99.21 | 
| spvD | FDAARGOS-711 | CP055131 | 99.06 | 
| sseE | FDAARGOS-711 | CP055130 | 99.29 | 
| sseL | FDAARGOS-707 | CP046279 | 100 | 
| mogA | FDAARGOS-711 | CP055130 | 98.58 | 
| mgtC | FDAARGOS-711 | CP055130 | 100 | 
| bcfA | FDAARGOS-711 | CP055130 | 100 | 
| araB | FDAARGOS-711 | CP055130 | 99.81 | 
| invJ | FDAARGOS-711 | CP055130 | 99.57 | 
| sscA | SL7207 | CP053865 | 99.16 | 
| sseD | 16A242 | CP020922 | 99.49 | 
| virK | 16A242 | CP020922 | 100 | 
| sipA | FDAARGOS-711 | CP055130 | 99.18 | 
| sopA | SL7207 | CP053865 | 99.71 | 
| ssaB | FDAARGOS-711 | CP055130 | 99.73 | 
| misL | FDAARGOS-711 | CP055130 | 99.77 | 
| orf319 | SL7207 | CP053865 | 98.77 | 
| pipC | FDAARGOS-711 | CP055130 | 100 | 
| SPI-1 | FDAARGOS-711 | CP055130 | 100 | 
| SPI-2 | FDAARGOS-711 | CP055130 | 100 | 
| SPI-3 | FDAARGOS-711 | CP055130 | 99.07 | 
| SPI-4 | FDAARGOS-711 | CP055130 | 98.94 | 
| SPI-5 | FDAARGOS-711 | CP055130 | 100 | 
| [1] | LYU N, FENG Y Q, PAN Y L, et al. Genomic characterization of Salmonella enterica isolates from retail meat in Beijing, China[J]. Frontiers in Microbiology, 2021, 12: 636332. | 
| [2] | 唐正露, 曹堃, 张丽, 等. 肠炎沙门氏菌ssrAB、hilA、hilD基因缺失菌株的构建及其生物学特性[J]. 微生物学通报, 2021, 48(4): 1195-1205. | 
| TANG Z L, CAO K, ZHANG L, et al. Construction and characterization of ssrAB, hilA, hilD-deficient mutants of Salmonella enteritidis[J]. Microbiology China, 2021, 48(4): 1195-1205. (in Chinese with English abstract) | |
| [3] | GONG J S, ZENG X M, ZHANG P, et al. Characterization of the emerging multidrug-resistant Salmonella enterica serovar Indiana strains in China[J]. Emerging Microbes & Infections, 2019, 8(1): 29-39. | 
| [4] | 孙景昱, 刘思洁, 赵薇, 等. 2011—2018年吉林省食品中沙门氏菌的污染监测及血清型别分布[J]. 食品安全质量检测学报, 2020, 11(24): 9377-9382. | 
| SUN J Y, LIU S J, ZHAO W, et al. Monitoring and serotype distribution of Salmonella contamination in foods in Jilin Province from 2011 to 2018[J]. Journal of Food Safety & Quality, 2020, 11(24): 9377-9382. (in Chinese with English abstract) | |
| [5] | 姚素霞, 郝瑞娥, 王洋, 等. 2014—2017年山西省沙门氏菌分子分型及耐药性研究[J]. 中国人兽共患病学报, 2021, 37(9): 815-820. | 
| YAO S X, HAO R E, WANG Y, et al. Analysis of antimicrobial susceptibility and molecular typing of Salmonella in Shanxi Province during 2014-2017[J]. Chinese Journal of Zoonoses, 2021, 37(9): 815-820. (in Chinese with English abstract) | |
| [6] | 李仕楷, 刘佳琪, 李荣旭, 等. 鹅源鼠伤寒沙门菌crp、hfq基因缺失株的构建及生物学特性分析[J]. 中国预防兽医学报, 2023, 45(1): 17-24. | 
| LI S K, LIU J Q, LI R X, et al. Construction and biological characteristics analysis of the crp and hfq deletion mutants of Salmonella typhimurium isolated from geese[J]. Chinese Journal of Preventive Veterinary Medicine, 2023, 45(1): 17-24. (in Chinese with English abstract) | |
| [7] | 周荣云, 李军朝, 邸涛, 等. 21株禽源鼠伤寒沙门氏菌的分离鉴定及耐药性研究[J]. 黑龙江畜牧兽医, 2016(16): 131-133. | 
| ZHOU R Y, LI J ( C/Z), DI T, et al. Isolation, identification and drug resistance of 21 strains of Salmonella typhimurium from poultry[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(16): 131-133. (in Chinese) | |
| [8] | LAN Y B, WANG S Z, YIN Y G, et al. Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass[J]. Journal of Bionic Engineering, 2008, 5(3): 239-246. | 
| [9] | KINGSLEY R A, MSEFULA C L, THOMSON N R, et al. Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype[J]. Genome Research, 2009, 19(12): 2279-2287. | 
| [10] | CARDEN S, OKORO C, DOUGAN G, et al. Non-typhoidal Salmonella typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis[J]. Pathogens and Disease, 2015, 73(4): ftu023. | 
| [11] | 杨文文, 李玉保, 路建彪, 等. 山东省鸡源沙门氏菌的分离鉴定及毒力基因分析[J]. 中国畜牧兽医, 2021, 48(8): 3069-3078. | 
| YANG W W, LI Y B, LU J B, et al. Isolation, identification and virulence gene analysis of Salmonella from chickens in Shandong Province[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(8): 3069-3078. (in Chinese with English abstract) | |
| [12] | 张珍. 鸡源致病性沙门氏菌毒力基因与致病性的相关性研究[D]. 南宁: 广西大学, 2017. | 
| ZHANG Z. Study on the correlation between virulence genes and pathogenicity of chicken pathogenic Salmonella[D]. Nanning: Guangxi University, 2017. (in Chinese with English abstract) | |
| [13] | PARK C J, LI J F, ZHANG X L, et al. Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance[J]. Infection, Genetics and Evolution, 2021, 87: 104645. | 
| [14] | LIN H H, CHEN H L, JANAPATLA R P, et al. Hyperexpression of type Ⅲ secretion system of Salmonella Typhi linked to a higher cytotoxic effect to monocyte-derived macrophages by activating inflammasome[J]. Microbial Pathogenesis, 2020, 146: 104222. | 
| [15] | LERMINIAUX N A, MACKENZIE K D, CAMERON A D S. Salmonella pathogenicity island 1 (SPI-1): the evolution and stabilization of a core genomic type three secretion system[J]. Microorganisms, 2020, 8(4): 576. | 
| [16] | 程琼, 庞瑞亮, 王若晨, 等. 不同源沙门氏菌对小鼠致病力的比较与毒力基因检测[J]. 中国人兽共患病学报, 2013, 29(5): 460-465. | 
| CHENG Q, PANG R L, WANG R C, et al. Comparative study on pathogenicity of Salmonellaisolates from different sources of laboratory mice and the detection of their virulence genes[J]. Chinese Journal of Zoonoses, 2013, 29(5): 460-465. (in Chinese with English abstract) | |
| [17] | 刘芳萍, 王德宁, 李昌文, 等. 鸡源沙门氏菌耐药性的分析及毒力基因的检测[J]. 中国兽医科学, 2013, 43(12): 1236-1239. | 
| LIU F P, WANG D N, LI C W, et al. Analysis of antimicrobial resistance of Salmonellaisolated from chickens and detection of virulence genes of isolates[J]. Chinese Veterinary Science, 2013, 43(12): 1236-1239. (in Chinese with English abstract) | |
| [18] | 李汀. 鸡致病性沙门氏菌分离鉴定及毒力岛核心基因多重PCR方法建立[D]. 合肥: 安徽农业大学, 2018. | 
| LI T. Isolation and identification of pathogenic Salmonella in chickens and establishment of multiple PCR methods for core genes of virulence island[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract) | |
| [19] | 宋雪, 赵格, 刘文化, 等. 不同来源沙门氏菌的毒力基因检测与耐药性分析[J]. 中国动物检疫, 2017, 34(5): 40-46. | 
| SONG X, ZHAO G, LIU W H, et al. Comparative analysis of virulent genes and drug resistance of Salmonella isolated from different sources[J]. China Animal Health Inspection, 2017, 34(5): 40-46. (in Chinese with English abstract) | |
| [20] | HERRERO-FRESNO A, OLSEN J E. Salmonella typhimurium metabolism affects virulence in the host: a mini-review[J]. Food Microbiology, 2018, 71: 98-110. | 
| [21] | WALES A D, DAVIES R H. A critical review of Salmonella typhimurium infection in laying hens[J]. Avian Pathology, 2011, 40(5): 429-436. | 
| [22] | LI Y L, YANG Q P, CAO C Y, et al. Prevalence and characteristics of Salmonella isolates recovered from retail raw chickens in Shaanxi Province, China[J]. Poultry Science, 2020, 99(11): 6031-6044. | 
| [23] | 方焕新, 李智丽, 黄淑坚, 等. 禽源沙门氏菌快速检测方法研究进展[J]. 实验动物科学, 2021, 38(1): 69-73. | 
| FANG H X, LI Z L, HUANG S J, et al. Review on rapid detecting approaches of avian Salmonella[J]. Laboratory Animal Science, 2021, 38(1): 69-73. (in Chinese with English abstract) | |
| [24] | 李师莹, 魏晓锋, 尹会方, 等. 沙门菌多重PCR检测方法的建立及其应用[J]. 中国家禽, 2022, 44(1): 102-107. | 
| LI S Y, WEI X F, YIN H F, et al. Establishment and application of multiplex PCR method for Salmonella[J]. China Poultry, 2022, 44(1): 102-107. (in Chinese with English abstract) | |
| [25] | 蒋小武, 邬雪芹, 彭航, 等. 2020—2021年宜春市某农贸市场沙门氏菌污染状况调查分析[J]. 宜春学院学报, 2021, 43(12): 1-5. | 
| JIANG X W, WU X Q, PENG H, et al. Investigation and analysis of Salmonella contamination within a farmer’s market in Yichun City from 2020 to 2021[J]. Journal of Yichun University, 2021, 43(12): 1-5. (in Chinese with English abstract) | |
| [26] | 张启龙, 栗云鹏, 傅彩霞, 等. 1株信鸽源鼠伤寒沙门氏菌的分离鉴定及其耐药性和毒力分析[J]. 中国畜牧兽医, 2021, 48(1): 338-347. | 
| ZHANG Q L, LI Y P, FU C X, et al. Isolation, identification, drug resistance and virulence analysis of one Salmonella typhimurium strain from racing pigeons[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(1): 338-347. (in Chinese with English abstract) | |
| [27] | 孔铭, 高尚, 徐磊, 等. 鹅源鼠伤寒沙门菌的分离鉴定及药敏试验[J]. 中国兽医杂志, 2020, 56(2): 82-84, 88. | 
| KONG M, GAO S, XU L, et al. Isolation, identification and drug resistance test of Salmonella typhimurium from geese[J]. Chinese Journal of Veterinary Medicine, 2020, 56(2): 82-84, 88. (in Chinese with English abstract) | |
| [28] | 程旭, 沈欣悦, 刘梅, 等. 鸽源鼠伤寒沙门菌分离鉴定及药敏试验[J]. 中国兽医杂志, 2016, 52(8): 99-100. | 
| CHENG X, SHEN X Y, LIU M, et al. Isolation, identification and drug sensitivity test of Salmonella typhimurium from pigeon[J]. Chinese Journal of Veterinary Medicine, 2016, 52(8): 99-100. (in Chinese) | |
| [29] | 王彦红, 高尚, 王丽扬, 等. 复方白头翁散对鹅源鼠伤寒沙门菌分离株的体外抑制效果[J]. 中国兽医杂志, 2022, 58(2): 62-67. | 
| WANG Y H, GAO S, WANG L Y, et al. In vitro inhibitory effect of compound Pulsatilla on Salmonella typhimurium isolates from geese[J]. Chinese Journal of Veterinary Medicine, 2022, 58(2): 62-67. (in Chinese with English abstract) | |
| [30] | 轩慧勇, 宋强强, 刘雪连, 等. 2015—2017年新疆动物源鼠伤寒沙门菌耐药性分析[J]. 中国农业大学学报, 2021, 26(2): 88-97. | 
| XUAN H Y, SONG Q Q, LIU X L, et al. Drug resistance of Salmonella Typhimurium isolated from animals in Xinjiang, 2015-2017[J]. Journal of China Agricultural University, 2021, 26(2): 88-97. (in Chinese with English abstract) | |
| [31] | PENG M F, SALAHEEN S, BUCHANAN R L, et al. Alterations of Salmonella enterica serovar typhimurium antibiotic resistance under environmental pressure[J]. Applied and Environmental Microbiology, 2018, 84(19): e01173-e01118. | 
| [32] | 王德宁. 鸡源沙门氏菌耐药性、致病性与毒力基因相关性分析[D]. 哈尔滨: 东北农业大学, 2014. | 
| WANG D N. Correlation analysis among drug-resistance, pathogenicity and virulence genes of Salmonella isolated from chickens[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
| [33] | 欧阳本. 动物源沙门氏菌耐药基因及毒力岛基因mgtC和sopB的检测[D]. 合肥: 安徽农业大学, 2013. | 
| OUYANG B. The detection of animal origin Salmonella resistance genes and pathogenicity island genes of mgtC and sopB[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese with English abstract) | |
| [34] | AMMAR A M, ABDEEN E E, ABO-SHAMA U H, et al. Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt[J]. Letters in Applied Microbiology, 2019, 68(2): 188-195. | 
| [1] | 马献, 尤雨薇, 康娟, 王国琴, 郑蕊, 苏建宇, 岳思君. 枸杞采后致腐病原菌的分离鉴定与天然抑菌剂筛选[J]. 浙江农业学报, 2025, 37(6): 1327-1335. | 
| [2] | 巩鑫鑫, 刘瑞玲, 韩延超, 孟祥红, 郜海燕, 陈杭君. 四种食用菌采后主要病原菌的分离与鉴定[J]. 浙江农业学报, 2025, 37(2): 456-465. | 
| [3] | 季权安, 徐翔飞, 鲍国连, 黄叶娥, 崔雪梅, 刘燕. 两株兔源多杀性巴氏杆菌分离鉴定及荚膜血清分型[J]. 浙江农业学报, 2024, 36(5): 1041-1046. | 
| [4] | 华涛, 常晨, 李倩文, 张道华, 唐波. 猪细小病毒1~7型全基因组遗传变异[J]. 浙江农业学报, 2024, 36(10): 2193-2203. | 
| [5] | 龚保荣, 吴红军, 李本镇, 徐大洋, 邹文腾, 曲君艺, 鲍传和, 朱若林. 患白内障病黑斑蛙米尔伊丽莎白菌的分离鉴定与PNGase基因克隆[J]. 浙江农业学报, 2023, 35(6): 1297-1306. | 
| [6] | 贾北平, 吕炫, 杨庆, 王一楠, 李皖萧, 解新迪, 朱英奇, 王蓓, 殷冬冬, 张云凯, 王晴, 王桂军. 安徽省5株新型鹅星状病毒的分离鉴定与遗传进化分析[J]. 浙江农业学报, 2023, 35(5): 1048-1057. | 
| [7] | 王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608. | 
| [8] | 李旭东, 刘永涛, 杨先乐, 杨移斌, 艾晓辉. 蛙类歪头、破头与白眼综合征病原分析[J]. 浙江农业学报, 2022, 34(8): 1617-1625. | 
| [9] | 曾雅婷, 熊桃, 李红叶. 柑橘黑点病菌(Diaporthe citri)快速分子检测技术[J]. 浙江农业学报, 2022, 34(7): 1457-1465. | 
| [10] | 王晓丽, 赵英伟, 孔晓娜, 曹子林. 蓝桉根际菌根真菌的分离鉴定及其对蓝桉生长和光合特性的影响[J]. 浙江农业学报, 2022, 34(5): 1015-1023. | 
| [11] | 朱寅初, 王宏宇, 云涛, 华炯钢, 叶伟成, 倪征, 陈柳, 张存. 浙江地区鹅星状病毒分离鉴定及其衣壳蛋白多克隆抗体的制备[J]. 浙江农业学报, 2022, 34(10): 2149-2159. | 
| [12] | 樊利虹, 郭红瑞, 吴江, 易军, 马晓平, 苟丽萍, 谢跃, 叶刚, 左之才. 牛源皮特不动杆菌对小鼠的致病性分析[J]. 浙江农业学报, 2021, 33(2): 230-238. | 
| [13] | 杨成年, 李芳, 朱成科, 唐征县, 易子琳, 韩璐璐, 阳龙江, 彭小倩, 贺蝶, 李杨, 任朝颖, 吕光俊. 杂交鲟出血病病原的分离鉴定与组织病理学观察[J]. 浙江农业学报, 2021, 33(12): 2275-2285. | 
| [14] | 陈梦竹, 康振亚, 郭向辉, 耿毅, 白明焕, 欧阳萍, 陈德芳, 黄小丽, 赖为民. 一株岩原鲤源致病性ST-251型嗜水气单胞菌的分离与生物学特性研究[J]. 浙江农业学报, 2021, 33(12): 2286-2294. | 
| [15] | 黄莉萍, 安莉丽, 李芳, 杨成年, 李虹, 吕光俊, 向枭, 孙翰昌, 翟旭亮, 朱成科. 中华鳖弗氏柠檬酸杆菌的鉴定及病理组织观察[J]. 浙江农业学报, 2020, 32(7): 1176-1186. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||