浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1385-1395.DOI: 10.3969/j.issn.1004-1524.2023.06.16
杨凯(), 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺*(
), 杨合同
收稿日期:
2022-07-18
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*李纪顺,E-mail: yewu2@sdas.org
作者简介:
杨凯(1988—),女,山东德州人,博士,助理研究员,研究方向为环境微生物。E-mail: yangkai1988@qlu.edu.cn
基金资助:
YANG Kai(), CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun*(
), YANG Hetong
Received:
2022-07-18
Online:
2023-06-25
Published:
2023-07-04
摘要:
为明确哈茨木霉(Trichoderma harzianum)LTR-2与产脲节杆菌(Arthrobacter ureafaciens)DnL1-1协同对小麦茎基腐病菌的防治效果,以假禾谷镰孢(Fusarium pseudograminearum)为指示菌对2种菌进行对峙培养和盆栽防效等研究;通过菌丝生长、孢子萌发等指标,探讨LTR-2与DnL1-1对病原菌的抑菌机制。结果表明,随着假禾谷镰孢接种浓度逐渐降低,小麦茎基腐病病情指数逐渐降低,各处理对小麦茎基腐病防效差异显著(P<0.05),其中LTR-2+DnL1-1联合接种对小麦茎基腐病的防效最好,对假禾谷镰孢20倍、50倍和100倍稀释液的防效分别为34.7%、50.3%和87.2%。平板对峙试验中,LTR-2+DnL1-1协同与LTR-2单独对假禾谷镰孢的抑菌率均可达100%,2种处理没有显著差异;对峙试验显微结果显示,LTR-2+DnL1-1协同与LTR-2单独均能使假禾谷镰孢菌丝形态发生明显改变,原生质浓缩,隔膜增多和菌丝断裂;LTR-2+DnL1-1共培养与LTR-2单独培养的发酵滤液处理对假禾谷镰孢的菌丝形态均有明显影响,使菌丝膨大畸变,后期只产生分生孢子,几乎不产生厚垣孢子,且显著抑制其分生孢子的萌发。综上所述,DnL1-1和LTR-2对小麦茎基腐病的防效具有协同增效作用,以上结果为两者的联合应用提供了科学依据。
中图分类号:
杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395.
YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395.
处理 Treatment | 病情指数Disease index | ||
---|---|---|---|
100倍稀释液 Dilution ratio 100× | 50倍稀释液 Dilution ratio 50× | 20倍稀释液 Dilution ratio 20× | |
CK | 25.8±6.3 a | 62.0±7.5 a | 79.2±5.2 a |
酷拉斯 Kuras | 3.3±1.4 c | 27.5±7.5 b | 51.7±1.4 b |
LTR-2+DnL1-1 | 3.3±3.8 c | 30.8±8.8 b | 51.7±1.4 b |
LTR-2 | 15.8±6.3 b | 42.5±2.5 ab | 53.3±7.6 b |
DnL1-1 | 27.5±5.0 a | 56.7±11.8 a | 71.7±8.0 a |
表1 LTR-2与DnL1-1对小麦茎基腐病病情指数的影响
Table 1 Effect of LTR-2 and DnL1-1 on disease index of wheat crown rot
处理 Treatment | 病情指数Disease index | ||
---|---|---|---|
100倍稀释液 Dilution ratio 100× | 50倍稀释液 Dilution ratio 50× | 20倍稀释液 Dilution ratio 20× | |
CK | 25.8±6.3 a | 62.0±7.5 a | 79.2±5.2 a |
酷拉斯 Kuras | 3.3±1.4 c | 27.5±7.5 b | 51.7±1.4 b |
LTR-2+DnL1-1 | 3.3±3.8 c | 30.8±8.8 b | 51.7±1.4 b |
LTR-2 | 15.8±6.3 b | 42.5±2.5 ab | 53.3±7.6 b |
DnL1-1 | 27.5±5.0 a | 56.7±11.8 a | 71.7±8.0 a |
图1 LTR-2与DnL1-1对小麦茎基腐病的防治效果 柱上无相同小写字母表示差异显著(P<0.05)。
Fig.1 Control effect of LTR-2 and DnL1-1 on wheat crown rot Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.
处理 Treatment | 株高 Plant height/cm | 苗鲜重 Fresh weight of seedling/g | 根鲜重 Fresh weight of root/g | 根冠比 Root shoot ratio/% |
---|---|---|---|---|
CK | 23.28±0.81 ab | 4.14±0.13 b | 1.81±0.30 b | 0.44±0.09 b |
酷拉斯Kuras | 23.84±1.16 ab | 5.33±0.56 a | 2.78±0.73 a | 0.53±0.17 a |
LTR-2+DnL1-1 | 24.42±0.76 a | 4.32±0.22 b | 2.89±0.30 a | 0.67±0.08 a |
LTR-2 | 23.29±0.70 ab | 4.54±0.18 b | 2.93±0.25 a | 0.65±0.07 a |
DnL1-1 | 22.85±1.12 bc | 4.14±0.44 b | 2.41±0.93 a | 0.57±0.19 a |
表2 假禾谷镰孢20倍稀释接种条件下不同处理对小麦植株生长的影响
Table 2 Effects of different treatments on wheat growth under 20 times dilution inoculation of Fusarium pseudograminearum
处理 Treatment | 株高 Plant height/cm | 苗鲜重 Fresh weight of seedling/g | 根鲜重 Fresh weight of root/g | 根冠比 Root shoot ratio/% |
---|---|---|---|---|
CK | 23.28±0.81 ab | 4.14±0.13 b | 1.81±0.30 b | 0.44±0.09 b |
酷拉斯Kuras | 23.84±1.16 ab | 5.33±0.56 a | 2.78±0.73 a | 0.53±0.17 a |
LTR-2+DnL1-1 | 24.42±0.76 a | 4.32±0.22 b | 2.89±0.30 a | 0.67±0.08 a |
LTR-2 | 23.29±0.70 ab | 4.54±0.18 b | 2.93±0.25 a | 0.65±0.07 a |
DnL1-1 | 22.85±1.12 bc | 4.14±0.44 b | 2.41±0.93 a | 0.57±0.19 a |
图2 LTR-2与DnL1-1对假禾谷镰孢菌的抑制效果 A~D分别为对照、DnL1-1、LTR-2、DnL1-1+LTR-2与假禾谷镰孢菌对峙培养7 d。
Fig.2 Inhibitory effect of LTR-2 and DnL1-1 on Fusarium pseudograminearum A-D represent the control, DnL1-1, LTR-2 and DnL1-1+LTR-2 confront cultured with Fusarium pseudograminearum for 7 days, respectively.
图3 LTR-2与DnL1-1对假禾谷镰孢菌丝生长的影响 A,空白对照;B,DnL1-1与假禾谷镰孢对峙培养;C、D,LTR-2与假禾谷镰孢对峙培养;E、F、G,LTR-2+DnL1-1与假禾谷镰孢对峙培养。图中黑色箭头所指为LTR-2以缠绕、穿插、紧贴等方式寄生于假禾谷镰孢处,或假禾谷镰孢菌丝原生质浓缩、隔膜增多、细胞变短或菌丝断裂处。
Fig.3 Effects of LTR-2 and DnL1-1 on mycelial growth of Fusarium pseudograminearum A, Control; B, DnL1-1 confront cultured with Fusarium pseudograminearum; C and D, LTR-2 confront cultured with Fusarium pseudograminearum; E, F and G, DnL1-1+LTR-2 confront cultured with Fusarium pseudograminearum. The black arrows in the figure represented that Trichoderma parasitize Fusarium pseudograminearum in ways of twining, penetrating and clinging, and lead to Fusarium pseudograminearum mycelium protoplasm shrinkage, septum increased, cell became shorter or mycelium broke.
图4 不同处理发酵滤液对假禾谷镰孢菌丝生长的影响 A、B分别为培养2、5 d的结果,自左向右依次为加入无菌水的对照组,加入DnL1-1发酵滤液、LTR-2发酵滤液、DnL1-1+LTR-2共培养发酵滤液的处理组,上图为正面,下图为反面。
Fig.4 Inhibition of different fermentation filtrates on growth of Fusarium pseudograminearum mycelia A and B represent the results of cultured for 2 and 5 days, respectively. From left to right are the sterile water control group, DnL1-1 fermentation filtrate treatment group, LTR-2 fermentation filtrate treatment group and DnL1-1+LTR-2 combined fermentation filtrate treatment group. The top is the front side, and the bottom is the back side.
图5 LTR-2与DnL1-1发酵滤液对假禾谷镰孢液体培养中菌丝生长的影响 A,对照(空白发酵滤液+假禾谷镰孢);B,DnL1-1发酵滤液+假禾谷镰孢;C,LTR-2发酵滤液+假禾谷镰孢;D,DnL1-1+LTR-2发酵滤液+假禾谷镰孢。图中黑色箭头所指为菌丝膨大、扭曲或溶断处。
Fig.5 Effects of LTR-2 and DnL1-1 fermentation filtrate on mycelia growth of Fusarium pseudograminearum in liquid culture A, B, C and D represent the sterile water, DnL1-1 fermentation filtrate, LTR-2 fermentation filtrate and DnL1-1+LTR-2 fermentation filtrate cultured with Fusarium pseudograminearum, respectively. The black arrows in the figure refer to the area where the hyphae expand, twist or fuse.
图6 LTR-2与DnL1-1发酵滤液对假禾谷镰孢液体培养中产孢的影响 A、B,对照(空白发酵滤液+假禾谷镰孢);C,DnL1-1发酵滤液+假禾谷镰孢;D,LTR-2发酵滤液+假禾谷镰孢;E,DnL1-1+LTR-2发酵滤液+假禾谷镰孢。图中黑色箭头所指为不同孢子类型,包括厚垣孢子、分生孢子。
Fig.6 Effect of LTR-2 and DnL1-1 fermentation filtrate on sporulation of Fusarium pseudograminearum in liquid culture A, B, C, D and E represent the sterile water, DnL1-1 fermentation filtrate, LTR-2 fermentation filtrate and DnL1-1+LTR-2 fermentation filtrate cultured with Fusarium pseudograminearum, respectively. The black arrows in the figure indicate different spore types, including chlamydospores and conidia.
[1] | 李冬梅, 曹克强, 王爱英, 等. 河北省小麦根病发生现状及致病病原种类调查[J]. 河北农业大学学报, 2001, 24(3): 38-42. |
LI D M, CAO K Q, WANG A Y, et al. Investigation on the occurrence and pathogen species of wheat root diseases in Hebei Province[J]. Journal of Agricultural University of Hebei, 2001, 24(3): 38-42. (in Chinese with English abstract) | |
[2] | 李鹏昌. 山东小麦根茎部主要真菌病害病原的分离鉴定和分子检测[D]. 泰安: 山东农业大学, 2014. |
LI P C. Identification and molecular detection of pathogen of soilborne fungal diseases in wheat of Shandong region[D]. Taian: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
[3] | SMILEY R W, GOURLIE J A, EASLEY S A, et al. Crop damage estimates for crown rot of wheat and barley in the Pacific northwest[J]. Plant Disease, 2005, 89(6): 595-604. |
[4] | CHAKRABORTY S, LIU C J, MITTER V, et al. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management[J]. Australasian Plant Pathology, 2006, 35(6): 643-655. |
[5] | ERGINBAS-ORAKCI G, POOLE G, NICOL J M, et al. Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat[J]. Journal of Plant Diseases and Protection, 2016, 123(1): 19-27. |
[6] | KAZAN K, GARDINER D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects[J]. Molecular Plant Pathology, 2018, 19(7): 1547-1562. |
[7] | 贺小伦, 周海峰, 袁虹霞, 等. 河南和河北冬小麦区假禾谷镰孢的遗传多样性[J]. 中国农业科学, 2016, 49(2): 272-281. |
HE X L, ZHOU H F, YUAN H X, et al. Genetic diversity of Fusarium pseudograminearum collected from Henan and Hebei winter wheat regions[J]. Scientia Agricultura Sinica, 2016, 49(2): 272-281. (in Chinese with English abstract) | |
[8] | 吴斌, 郭霞, 张眉, 等. 鲁西南地区小麦茎基腐病病原菌鉴定及其致病力分析[J]. 麦类作物学报, 2018, 38(3): 358-365. |
WU B, GUO X, ZHANG M, et al. Identification and pathogenicity of pathogens associated with the wheat crown rot in the southwest of Shandong Province[J]. Journal of Triticeae Crops, 2018, 38(3): 358-365. (in Chinese with English abstract) | |
[9] | ZHOU H F, HE X L, WANG S, et al. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China[J]. Environmental Microbiology, 2019, 21(8): 2740-2754. |
[10] | DENG Y Y, LI W, ZHANG P, et al. Fusarium pseudograminearum as an emerging pathogen of crown rot of wheat in Eastern China[J]. Plant Pathology, 2020, 69(2): 240-248. |
[11] | 林琪童, 杨丽荣, 夏明聪, 等. 小麦茎基腐病生防菌株YB-161的分离鉴定及防效测定[J]. 植物保护学报, 2020, 47(4): 939-948. |
LIN Q T, YANG L R, XIA M C, et al. Isolation, identification and control efficiency of biocontrol strain YB-161 against wheat crown rot[J]. Journal of Plant Protection, 2020, 47(4): 939-948. (in Chinese with English abstract) | |
[12] | 张洁, 汤蒙蒙, 夏明聪, 等. 枯草芽孢杆菌YB-05与申嗪霉素复配防治小麦茎基腐病[J]. 中国生物防治学报, 2018, 34(6): 866-872. |
ZHANG J, TANG M M, XIA M C, et al. Combination of Bacillus subtilis YB-05 and Shenqinmycin for integrated control of wheat crown rot[J]. Chinese Journal of Biological Control, 2018, 34(6): 866-872. (in Chinese with English abstract) | |
[13] | ZHANG J E, ZHU W Q, GOODWIN P H, et al. Response of Fusarium pseudograminearum to biocontrol agent Bacillus velezensis YB-185 by phenotypic and transcriptome analysis[J]. Journal of Fungi, 2022, 8(8): 763. |
[14] | STUMMER B E, ZHANG Q, ZHANG X, et al. Quantification of Trichoderma afroharzianum, Trichoderma harzianum and Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta suppression of the crown rot pathogen Fusarium pseudograminearum[J]. Journal of Applied Microbiology, 2020, 129(4): 971-990. |
[15] | 陈凯, 隋丽娜, 杨凯, 等. 两株木霉共培养发酵提高对小麦苗期茎基腐病的防治效果[J]. 植物病理学报, 2022, 52(3): 425-433. |
CHEN K, SUI L N, YANG K, et al. Co-culturation of two Trichoderma strains enhanced control efficiency against wheat crown rot at seedling stage[J]. Acta Phytopathologica Sinica, 2022, 52(3): 425-433. (in Chinese with English abstract) | |
[16] | 扈进冬, 杨在东, 吴远征, 等. 哈茨木霉拌种对冬小麦生长、土传病害及根际真菌群落的影响[J]. 植物保护, 2021, 47(5): 35-40. |
HU J D, YANG Z D, WU Y Z, et al. Effects of seed dressing treatment with Trichoderma harzianum on the growth of winter wheat seedlings, soil borne diseases and rhizosphere fungal community[J]. Plant Protection, 2021, 47(5): 35-40. (in Chinese with English abstract) | |
[17] | 纪莉景, 王亚娇, 栗秋生, 等. 防治小麦茎基腐病种衣剂的筛选及全生育期防控效果[J]. 河北农业科学, 2020, 24(2): 42-47. |
JI L J, WANG Y J, LI Q S, et al. Screening of seed coating agents for controlling Fusarium crown rot and control efficiency at the whole growth period of wheat[J]. Journal of Hebei Agricultural Sciences, 2020, 24(2): 42-47. (in Chinese with English abstract) | |
[18] | XU W, YANG Q A, XIE X A, et al. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat[J]. Biology, 2022, 11(5): 778. |
[19] | RUANGWONG O U, WONGLOM P, PHOKA N, et al. Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo)[J]. Physiological and Molecular Plant Pathology, 2021, 115: 101663. |
[20] | KIM Y T, MONKHUNG S, LEE Y S, et al. Effects of Lysobacter antibioticus HS124, an effective biocontrol agent against Fusarium graminearum, on crown rot disease and growth promotion of wheat[J]. Canadian Journal of Microbiology, 2019, 65(12): 904-912. |
[21] | 陈小洁, 王其, 张欣悦, 等. 杜仲内生细菌拮抗小麦赤霉病菌研究[J]. 浙江农业学报, 2019, 31(5): 766-776. |
CHEN X J, WANG Q, ZHANG X Y, et al. Study on endophytic bacteria isolated from Eucommia ulmoides with antimicrobial activity against Fusarium graminearum[J]. Acta Agriculturae Zhejiangensis, 2019, 31(5): 766-776. (in Chinese with English abstract) | |
[22] | LI S, XU J Q, FU L M, et al. Biocontrol of wheat crown rot using Bacillus halotolerans QTH8[J]. Pathogens, 2022, 11(5): 595. |
[23] | LI T T, TANG J Q, KARUPPIAH V, et al. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites[J]. Biological Control, 2020, 140: 104122. |
[24] | LI L, MA M C, HUANG R, et al. Induction of chlamydospore formation in Fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2[J]. Journal of Chemical Ecology, 2012, 38(8): 966-974. |
[1] | 吴筱萌, 徐悦, 程鸿浩, 陈诗燕, 周夏芝, 邹运鼎, 毕守东. 六种茶园茶尺蠖与其蜘蛛类天敌的空间和数量关系[J]. 浙江农业学报, 2023, 35(6): 1349-1359. |
[2] | 朱森林, 王丹媚, 唐秀梅, 陈瑞, 杨蓉, 徐月妹, 金璐懿, 任晴雯, 刘鹏, 罗军. 木霉水分散粒剂的培养条件优化及其对黄瓜枯萎病的防治效果[J]. 浙江农业学报, 2020, 32(6): 1009-1018. |
[3] | 冯江鹏, 邱莉萍, 梁秀燕, 陈碧秀, 夏海洋, 彭春龙, 钟永军. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报, 2020, 32(5): 831-839. |
[4] | 黄俊, 钱诚, 吕要斌. 一种南方小花蝽产卵基质的高效利用方法[J]. 浙江农业学报, 2020, 32(3): 455-459. |
[5] | 赵燕燕, 田俊策, 郑许松, 徐红星, 鲁艳辉, 杨亚军, 臧连生, 吕仲贤. 酢浆草和车轴草作为螟黄赤眼蜂田间蜜源植物的可行性分析[J]. 浙江农业学报, 2017, 29(1): 106-112. |
[6] | 张建萍,段桂芳,杨爽,周勇军,陆永良*,余柳青. 微生物除草剂禾长蠕孢菌孢子助剂筛选[J]. 浙江农业学报, 2016, 28(1): 90-. |
[7] | 胡豹;楼洪兴;*. 我国农作物病虫害防治技术的专利战略与管理[J]. , 2014, 26(2): 0-495502. |
[8] | 李星月;刘奇志*;杨道伟. 双孢蘑菇基质中隐杆线虫Caenorhabditis sp-CNM生防潜力研究[J]. , 2012, 24(6): 0-1063. |
[9] | 韩超;武贵元;刘爱新*;王玉军*. 吡咯伯克霍尔德氏菌A12筛选鉴定及其对烟草幼苗的促生作用[J]. , 2012, 24(5): 0-885. |
[10] | 黄永红;李春雨;魏岳荣;左存武;易干军;* . 韭菜对香蕉枯萎病菌的拮抗及其对盆栽香蕉枯萎病发生的抑制作用[J]. , 2011, 23(6): 0-1166. |
[11] | 耿锐梅;张建萍;余柳青 . 稻平脐蠕孢的分离、鉴定及对作物的安全性[J]. , 2008, 20(6): 0-450. |
[12] | 吴石金;阮晓丽;张岚. 放线菌WZ-05代谢产物的抑菌杀螨效果[J]. , 2008, 20(2): 0-122. |
[13] | 张丽靖;冯明光. 基于球孢白僵菌的真菌杀虫剂生产工艺与剂型述评[J]. , 2004, 16(6): 0-399. |
[14] | Identification and bioactive assay of antagonistic bacteria to control soil-borne diseases of cucumber. 黄瓜土传病害拮抗菌分离鉴定及其生物活性测定[J]. , 2004, 16(3): 0-155. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 570
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 245
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||