浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 736-744.DOI: 10.3969/j.issn.1004-1524.20240225
• 综述 • 上一篇
吴佳奇1(), 朱学明2, 鲍坚东2, 王操屹3, 周肖瑜4, 李琳2,*(
), 林福呈2,*(
)
收稿日期:
2024-03-08
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
吴佳奇(1999—),男,山东临沂人,硕士研究生,主要从事稻瘟病菌致病机理研究。E-mail: 15605398347@163.com
通讯作者:
* 李琳, E-mail:2161643@zju.edu.cn基金资助:
WU Jiaqi1(), ZHU Xueming2, BAO Jiandong2, WANG Caoyi3, ZHOU Xiaoyu4, LI Lin2,*(
), LIN Fucheng2,*(
)
Received:
2024-03-08
Online:
2025-03-25
Published:
2025-04-02
摘要:
稻瘟病菌(Magnaporthe oryzae)是一种严重威胁谷物生长发育并导致减产的植物病原真菌。近年来,稻瘟病在超过85个国家蔓延,导致年均水稻产量下降约30%,严重流行会导致水稻高达80%的产量损失。虽然杀菌剂能短暂控制稻瘟病的流行,但是误用和过度使用杀菌剂导致土壤污染和粮食安全隐患。因此,亟须开发绿色的生物防治剂替代化学杀菌剂来防控植物病害。生物防治是一种环境友好且有前景的植物病害防治策略,研究发现,许多微生物及其次生代谢产物和植物衍生的生物活性物质可以显著抑制稻瘟病菌的生长,并且对环境友好。本文阐述了稻瘟病菌的侵染途径,全面综述目前能够绿色有效防治稻瘟病的方法,论述了微生物及其次生代谢产物和植物衍生的生物活性物质防治稻瘟病的机理,为稻瘟病绿色综合防治提供新的思路和见解。
中图分类号:
吴佳奇, 朱学明, 鲍坚东, 王操屹, 周肖瑜, 李琳, 林福呈. 稻瘟病生物防治研究进展[J]. 浙江农业学报, 2025, 37(3): 736-744.
WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744.
微生物 Microorganisms | 来源 Source | 作用机理 Mechanism |
---|---|---|
哈茨木霉 Trichoderma harzianum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
绿色木霉 Trichoderma viride | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
棘孢木霉 Trichoderma asperullum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
柿假尾孢 Pseudocercospora kaki | 茶树叶子 Tea leaf | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枝状枝孢 Cladosporium cladosporioides | 水稻叶片 Rice leaf | 降低稻瘟病菌致病性 Reduce the pathogenicity of rice blast fungus[ |
酵母CMY045 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus |
酵母CMY018 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
链霉菌RM-1-138 Streptomyces philanthi | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
球形链霉菌JK-1 Streptomyces globisporus | 受污染的真菌培养板 Contaminated fungal culture plates | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
灰褐色链霉菌 Streptomyces griseofuscus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
酒红土褐链霉菌 Streptomyces vinaceusdrappus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
坚强芽孢杆菌E65 Bacillus firmus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
蜡样芽孢杆菌 Bacillus cereus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌 Bacillus subtillis | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌SYX04 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌SYX20 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌DL76 Bacillus subtillis | 稻田根际 Rice field rhizosphere | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
表1 微生物防治稻瘟病的种类和方式
Table 1 Types and methods of microbial control of rice blast
微生物 Microorganisms | 来源 Source | 作用机理 Mechanism |
---|---|---|
哈茨木霉 Trichoderma harzianum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
绿色木霉 Trichoderma viride | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
棘孢木霉 Trichoderma asperullum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
柿假尾孢 Pseudocercospora kaki | 茶树叶子 Tea leaf | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枝状枝孢 Cladosporium cladosporioides | 水稻叶片 Rice leaf | 降低稻瘟病菌致病性 Reduce the pathogenicity of rice blast fungus[ |
酵母CMY045 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus |
酵母CMY018 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
链霉菌RM-1-138 Streptomyces philanthi | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
球形链霉菌JK-1 Streptomyces globisporus | 受污染的真菌培养板 Contaminated fungal culture plates | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
灰褐色链霉菌 Streptomyces griseofuscus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
酒红土褐链霉菌 Streptomyces vinaceusdrappus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
坚强芽孢杆菌E65 Bacillus firmus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
蜡样芽孢杆菌 Bacillus cereus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌 Bacillus subtillis | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌SYX04 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌SYX20 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌DL76 Bacillus subtillis | 稻田根际 Rice field rhizosphere | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
[1] | SKAMNIOTI P, GURR S J. Against the grain: safeguarding rice from rice blast disease[J]. Trends in Biotechnology, 2009, 27(3): 141-150. |
[2] | HOWARD R J, VALENT B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea[J]. Annual Review of Microbiology, 1996, 50: 491-512. |
[3] | DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. |
[4] | ZHANG C X, ZHANG X X, SHEN S H. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131[J]. World Journal of Microbiology & Biotechnology, 2014, 30(6): 1763-1774. |
[5] | DAGDAS Y F, YOSHINO K, DAGDAS G, et al. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae[J]. Science, 2012, 336(6088): 1590-1595. |
[6] | XIONG Z Q, TU X R, WEI S J, et al. In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea[J]. Biotechnology Letters, 2013, 35(9): 1475-1479. |
[7] | KOMÁREK M, EVA Č, CHRASTNÝ V, et al. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects[J]. Environment International, 2010, 36(1): 138-151. |
[8] | CHUNG S, KONG H, BUYER J S, et al. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper[J]. Applied Microbiology and Biotechnology, 2008, 80(1): 115-123. |
[9] | TODOROVA S, KOZHUHAROVA L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil[J]. World Journal of Microbiology & Biotechnology, 2010, 26(7): 1207-1216. |
[10] | SHODA M. Bacterial control of plant diseases[J]. Journal of Bioscience and Bioengineering, 2000, 89(6): 515-521. |
[11] | CHAN Y K, MCCORMICK W A, SEIFERT K A. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species[J]. Canadian Journal of Microbiology, 2003, 49(4): 253-262. |
[12] | MORAES BAZIOLI J, BELINATO J R, COSTA J H, et al. Biological control of citrus postharvest phytopathogens[J]. Toxins, 2019, 11(8): 460. |
[13] | PUSZTAHELYI T, HOLB I J, PÓCSI I. Secondary metabolites in fungus-plant interactions[J]. Frontiers in Plant Science, 2015, 6: 573. |
[14] | KHAN R A A, NAJEEB S, MAO Z C, et al. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode[J]. Microorganisms, 2020, 8(3): 401. |
[15] | KÖHL J, KOLNAAR R, RAVENSBERG W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy[J]. Frontiers in Plant Science, 2019, 10: 845. |
[16] | LEE S H, OH Y T, LEE D Y, et al. Large-scale screening of the plant extracts for antifungal activity against the plant pathogenic fungi[J]. The Plant Pathology Journal, 2022, 38(6): 685-691. |
[17] | ARIF, BHOSALE, KUMAR, et al. Natural products-antifungal agents derived from plants[J]. Journal of Asian Natural Products Research, 2009, 11(7): 621-638. |
[18] | YOON M Y, CHA B, KIM J C. Recent trends in studies on botanical fungicides in agriculture[J]. The Plant Pathology Journal, 2013, 29(1): 1-9. |
[19] | LENEVEU-JENVRIN C, CHARLES F, BARBA F J, et al. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(17): 2837-2855. |
[20] | CHAKRABORTY M, MAHMUD N U, ULLAH C, et al. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2021, 41(7): 994-1022. |
[21] | WALTERS D, WALSH D, NEWTON A, et al. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors[J]. Phytopathology, 2005, 95(12): 1368-1373. |
[22] | PRESS C M, LOPER J E, KLOEPPER J W. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber[J]. Phytopathology, 2001, 91(6): 593-598. |
[23] | BÉRDY J. Bioactive microbial metabolites[J]. The Journal of Antibiotics, 2005, 58(1): 1-26. |
[24] | MAUCH-MANI B, BACCELLI I, LUNA E, et al. Defense priming: an adaptive part of induced resistance[J]. Annual Review of Plant Biology, 2017, 68: 485-512. |
[25] | SHA Y X, WANG Q, LI Y. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast[J]. SpringerPlus, 2016, 5(1): 1238. |
[26] | LI L W, LI Y R, LU K L, et al. Bacillus subtilis KLBMPGC81 suppresses appressorium-mediated plant infection by altering the cell wall integrity signaling pathway and multiple cell biological processes in Magnaporthe oryzae[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 983757. |
[27] | KRINGS M, TAYLOR T N, HASS H, et al. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses[J]. The New Phytologist, 2007, 174(3): 648-657. |
[28] | SIRRENBERG A, GÖBEL C, GROND S, et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131(4): 581-589. |
[29] | SHERAMETI I, SHAHOLLARI B, VENUS Y, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry, 2005, 280(28): 26241-26247. |
[30] | Bartholdy, BERRECK M, HASELWANDTER K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte[J]. Biometals, 2001, 14(1): 33-42. |
[31] | HARMAN G E. Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity[J]. New Phytologist, 2011, 189(3): 647-649. |
[32] | LI X R, WAJJIHA B, ZHANG P H, et al. Serendipita indica chitinase protects rice from the blast and bakanae diseases[J]. Journal of Basic Microbiology, 2023, 63(7): 734-745. |
[33] | LI H, GUAN Y, DONG Y L, et al. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae[J]. PLoS One, 2018, 13(10): e0203505. |
[34] | KORPI A, JÄRNBERG J, PASANEN A L. Microbial volatile organic compounds[J]. Critical Reviews in Toxicology, 2009, 39(2): 139-193. |
[35] | MING Q L, HAN T, LI W C, et al. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza[J]. Phytomedicine, 2012, 19(3/4): 330-333. |
[36] | VIZCAÍNO J A, SANZ L, CARDOZA R E, et al. Detection of putative peptide synthetase genes in Trichoderma species: application of this method to the cloning of a gene from T. harzianum CECT 2413[J]. FEMS Microbiology Letters, 2005, 244(1): 139-148. |
[37] | KESWANI C, SINGH H B, HERMOSA R, et al. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents[J]. Applied Microbiology and Biotechnology, 2019, 103(23/24): 9287-9303. |
[38] | MAZZEI P, VINALE F, WOO S L, et al. Metabolomics by proton high-resolution magic-angle-spinning nuclear magnetic resonance of tomato plants treated with two secondary metabolites isolated from Trichoderma[J]. Journal of Agricultural and Food Chemistry, 2016, 64(18): 3538-3545. |
[39] | AIDEMARK M, ANDERSSON C J, RASMUSSON A G, et al. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells[J]. BMC Plant Biology, 2009, 9: 27. |
[40] | JOHANSSON F I, MICHALECKA A M, MØLLER I M, et al. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria[J]. Biochemical Journal, 2004, 380(Pt 1): 193-202. |
[41] | MATIC S, GEISLER D A, MØLLER I M, et al. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells[J]. Biochemical Journal, 2005, 389(Pt 3): 695-704. |
[42] | 阮盈盈, 刘峰. 木霉菌生物防治作用机制与应用研究进展[J]. 浙江农业科学, 2020, 61(11): 2290-2294. |
RUAN Y Y, LIU F. Research progress of biological control mechanism and application of Trichoderma[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(11): 2290-2294. (in Chinese) | |
[43] | SEGARRA G, CASANOVA E, AVILÉS M, et al. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron[J]. Microbial Ecology, 2010, 59(1): 141-149. |
[44] | SHEN Q, LIANG M L, YANG F, et al. Ferroptosis contributes to developmental cell death in rice blast[J]. New Phytologist, 2020, 227(6): 1831-1846. |
[45] | 李梅, 田莹, 蒋细良. 植物内生木霉菌研究进展[J]. 中国生物防治学报, 2020, 36(2): 155-162. |
LI M, TIAN Y, JIANG X L. Advances in research on endophytic Trichoderma in plants[J]. Chinese Journal of Biological Control, 2020, 36(2): 155-162. (in Chinese with English abstract) | |
[46] | 林志伟, 孙冬梅, 迟丽. 黄绿木霉菌发酵液对水稻防御酶的影响[J]. 江苏农业科学, 2015, 43(1): 121-123. |
LIN Z W, SUN D M, CHI L. Effects of Trichoderma aureoviride fermentation broth on rice defense enzymes[J]. Jiangsu Agricultural Sciences, 2015, 43(1): 121-123. (in Chinese) | |
[47] | 卢宣君, 苏珍珠, 刘小红, 等. 稻瘟病菌致病机制及绿色防控新策略[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 721-730. |
LU X J, SU Z Z, LIU X H, et al. Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2022, 48(6): 721-730. (in Chinese with English abstract) | |
[48] | YUAN Z L, LIN F C, ZHANG C L, et al. A new species of Harpophora(Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte[J]. FEMS Microbiology Letters, 2010, 307(1): 94-101. |
[49] | SU Z Z, DAI M D, ZHU J N, et al. Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice[J]. Journal of Hazardous Materials, 2021, 419: 126435. |
[50] | XU X H, SU Z Z, WANG C, et al. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte[J]. Scientific Reports, 2014, 4: 5783. |
[51] | 王国迪, 陈瑞, 汪彦欣, 等. 内生真菌稻镰状瓶霉对直播稻稻瘟病的防治效果[J]. 中国稻米, 2019, 25(4): 68-69. |
WANG G D, CHEN R, WANG Y X, et al. Control efficiency of endophytic fungus Falciphora oryzae to rice blast of direct seeding rice[J]. China Rice, 2019, 25(4): 68-69. (in Chinese with English abstract) | |
[52] | RAIS A, SHAKEEL M, MALIK K, et al. Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions[J]. Microbiological Research, 2018, 208: 54-62. |
[53] | SCHUMACHER R W, TALMAGE S C, MILLER S A, et al. Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium[J]. Journal of Natural Products, 2003, 66(9): 1291-1293. |
[54] | LUO X, CHEN Y, WANG J H, et al. Biocontrol potential of Burkholderia sp. BV6 against the rice blast fungus Magnaporthe oryzae[J]. Journal of Applied Microbiology, 2022, 133(2): 883-897. |
[55] | ZHANG Y F, YANG Y M, ZHANG L Y, et al. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide[J]. Frontiers in Microbiology, 2023, 14: 1201624. |
[56] | LIU W, WANG J W, LI S, et al. Genomic and biocontrol potential of the crude lipopeptide by Streptomyces bikiniensis HD-087 against Magnaporthe oryzae[J]. Frontiers in Microbiology, 2022, 13: 888645. |
[57] | BOUKAEW S, CHEIRSILP B, YOSSAN S, et al. Utilization of palm oil mill effluent as a novel substrate for the production of antifungal compounds by Streptomyces philanthi RM-1-138 and evaluation of its efficacy in suppression of three strains of oil palm pathogen[J]. Journal of Applied Microbiology, 2022, 132(3): 1990-2003. |
[58] | XU T, CAO L D, ZENG J R, et al. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen[J]. Pesticide Biochemistry and Physiology, 2019, 160: 58-69. |
[59] | CHAIHARN M, THEANTANA T, PATHOM-AREE W. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi[J]. Pathogens, 2020, 9(2): 126. |
[60] | KGOSI V T, BAO T T, YING Z, et al. Anti-fungal analysis of Bacillus subtilis DL76 on conidiation, appressorium formation, growth, multiple stress response, and pathogenicity in Magnaporthe oryzae[J]. International Journal of Molecular Sciences, 2022, 23(10): 5314. |
[61] | SAIKIA R, GOGOI D K, MAZUMDER S, et al. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India[J]. Microbiological Research, 2011, 166(3): 216-225. |
[62] | HÖFTE M, ALTIER N. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems[J]. Research in Microbiology, 2010, 161(6): 464-471. |
[63] | BORDIEC S, PAQUIS S, LACROIX H, et al. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions[J]. Journal of Experimental Botany, 2011, 62(2): 595-603. |
[64] | XIONG Z Q, TU X R, WEI S J, et al. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani[J]. PLoS One, 2013, 8(8): e73884. |
[65] | LIM S M, YOON M Y, CHOI G J, et al. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi[J]. The Plant Pathology Journal, 2017, 33(5): 488-498. |
[66] | ZHANG L L, SUN C M. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Applied and Environmental Microbiology, 2018, 84(18): e00445-18. |
[67] | TENDULKAR S R, SAIKUMARI Y K, PATEL V, et al. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea[J]. Journal of Applied Microbiology, 2007, 103(6): 2331-2339. |
[68] | CHAKRABORTY M, MAHMUD N U, GUPTA D R, et al. Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae triticum[J]. Frontiers in Microbiology, 2020, 11: 665. |
[69] | ZHANG H Z, ZHANG C H, XIANG X L, et al. Uptake and transport of antibiotic kasugamycin in castor bean (Ricinus communis L.) seedlings[J]. Frontiers in Microbiology, 2022, 13: 948171. |
[70] | XU L L, HAN T, WU J Z, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus[J]. Phytomedicine, 2009, 16(6/7): 609-616. |
[71] | LIU X L, DONG M S, CHEN X H, et al. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin[J]. Applied Microbiology and Biotechnology, 2008, 78(2): 241-247. |
[72] | VERMA V C, GOND S K, KUMAR A, et al. Endophytic actinomycetes from Azadirachta indica A. juss.: isolation, diversity, and anti-microbial activity[J]. Microbial Ecology, 2009, 57(4): 749-756. |
[73] | BECKER J, LIERMANN J C, OPATZ T, et al. GKK1032A2, a secondary metabolite from Penicillium sp. IBWF-029-96, inhibits conidial germination in the rice blast fungus Magnaporthe oryzae[J]. The Journal of Antibiotics, 2012, 65(2): 99-102. |
[74] | VU T T, KIM H, TRAN V K, et al. In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria[J]. BMC Complementary and Alternative Medicine, 2016, 16: 32. |
[75] | FRY F H, OKARTER N, BAYNTON-SMITH C, et al. Use of a substrate/alliinase combination to generate antifungal activity in situ[J]. Journal of Agricultural and Food Chemistry, 2005, 53(3): 574-580. |
[76] | BOEKE S J, BOERSMA M G, ALINK G M, et al. Safety evaluation of neem (Azadirachta indica) derived pesticides[J]. Journal of Ethnopharmacology, 2004, 94(1): 25-41. |
[77] | BRAUN H, WOITSCH L, HETZER B, et al. Trichoderma harzianum: inhibition of mycotoxin producing fungi and toxin biosynthesis[J]. International Journal of Food Microbiology, 2018, 280: 10-16. |
[78] | ZHANG F Z, LI X M, YANG S Q, et al. Thiocladospolides A-D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3[J]. Journal of Natural Products, 2019, 82(6): 1535-1541. |
[79] | 王营, 李浩华, 谭国慧, 等. 广藿香内生真菌类群分析及其抗菌活性研究[J]. 中国中药杂志, 2017, 42(4): 657-662. |
WANG Y, LI H H, TAN G H, et al. Study on communities of endophytic fungi from Pogostemon cablin and their antimicrobial activities[J]. China Journal of Chinese Materia Medica, 2017, 42(4): 657-662. | |
[80] | ZHANG G Y, ZHANG H B, LI S M, et al. Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation[J]. Applied and Environmental Microbiology, 2012, 78(7): 2393-2401. |
[81] | MORANDINI L, CAULIER S, BRAGARD C, et al. Bacillus cereus sensu lato antimicrobial arsenal: an overview[J]. Microbiological Research, 2024, 283: 127697. |
[82] | WEI Y, LI L H, HU W J, et al. Suppression of rice blast by bacterial strains isolated from cultivated soda saline-sodic soils[J]. International Journal of Environmental Research and Public Health, 2020, 17(14): 5248. |
[83] | FONTANA D C, DE PAULA S, TORRES A G, et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses[J]. Pathogens, 2021, 10(5): 570. |
[84] | SANTOS M, CESANELLI I, DIÁNEZ F, et al. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses[J]. Journal of Fungi, 2021, 7(11): 939. |
[1] | 贺宇杉, 朱海霞. 梨黑孢链格孢GD-011菌株除草机制的初步研究[J]. 浙江农业学报, 2024, 36(5): 1094-1101. |
[2] | 黄昌丽, 朱学明, 李琳, 鲍坚东, 俞晓平, 林福呈. 稻瘟病菌MoZds1的功能分析[J]. 浙江农业学报, 2024, 36(3): 559-568. |
[3] | 侯栋, 李亚莉, 岳宏忠, 张东琴, 姚拓, 黄书超, 杨海兴. 微生物菌肥替代部分化肥对花椰菜产量、品质及土壤微生物的影响[J]. 浙江农业学报, 2024, 36(3): 589-599. |
[4] | 乔红雍, 袁涛, 赵信勇, 杨会岩. 不同株龄鲁菏红细根内生微生物群落变化特征[J]. 浙江农业学报, 2024, 36(1): 115-126. |
[5] | 王佳丽, 王梓宇, 马咏琪, 唐德富, 孙丽坤. 氮素转化菌群对牛粪好氧堆肥的保氮效果[J]. 浙江农业学报, 2024, 36(1): 177-186. |
[6] | 谢晓杰, 许双燕, 王文凡, 杨健, 赵卓群, 王敏, 郑华宝. 畜禽养殖废弃物中抗生素的微生物降解研究进展[J]. 浙江农业学报, 2023, 35(8): 1975-1992. |
[7] | 吴筱萌, 徐悦, 程鸿浩, 陈诗燕, 周夏芝, 邹运鼎, 毕守东. 六种茶园茶尺蠖与其蜘蛛类天敌的空间和数量关系[J]. 浙江农业学报, 2023, 35(6): 1349-1359. |
[8] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
[9] | 肖小兰, 张浩, 付传僡, 刘皓, 阮文权. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657. |
[10] | 周力, 桂林生. 饲粮中小麦颗粒用量对藏羊公羔瘤胃内环境的影响[J]. 浙江农业学报, 2023, 35(11): 2543-2554. |
[11] | 王晓楠, 冯晓晓, 施斌, 陈恩磊, 陈梦丽, 郑永利, 吴慧明. 内生细菌ZN-S10的鉴定及其对番茄青枯病菌的抑菌作用[J]. 浙江农业学报, 2023, 35(11): 2636-2644. |
[12] | 崔玲宇, 喻曼, 乔宇颖, 苏瑶, 王云龙, 沈阿林. 基于Web of Science数据库的土壤质量评价及其微生物指标研究趋势分析[J]. 浙江农业学报, 2023, 35(11): 2688-2697. |
[13] | 韩明明, 詹炜, 黄福勇, 李方兴, 楼宝. 砂滤模式下马口鱼消化道细菌的组成、分类与相关性[J]. 浙江农业学报, 2023, 35(10): 2286-2298. |
[14] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[15] | 李祥, 朱海霞. 杂草致病菌株GD-0221的分离、鉴定与除草潜力[J]. 浙江农业学报, 2022, 34(9): 1967-1975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||