浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1396-1406.DOI: 10.3969/j.issn.1004-1524.2023.06.17
收稿日期:
2021-08-10
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*陈竹,E-mail: 274586429@qq.com
作者简介:
杨松花(1997—),女,贵州凯里人,硕士,主要从事植物营养学研究。E-mail: 2861575380@qq.com
基金资助:
YANG Songhua(), SHI Guiyang, WANG Jingqin, CHEN Zhu*(
)
Received:
2021-08-10
Online:
2023-06-25
Published:
2023-07-04
摘要:
选取10个大豆品种,通过营养液水培试验收集各品种在不同磷水平下的根系分泌物,测定有机酸组分及其分泌量,研究分泌物对土壤中难溶性磷的活化作用。结果表明,低磷胁迫影响有机酸的分泌量,Qd11、Ax、Jd23、Jd12和Fd的总有机酸分泌量在低磷胁迫下增加。不同大豆品种分泌的主要有机酸不同,Td、Cd、Qd11、Tf、Dd和Qd7以分泌草酸为主,Ax、Jd23、Jd12和Fd以分泌酒石酸为主。大豆分泌物对4种难溶性磷的活化效果整体表现为Ca-P>Al-P>O-P>Fe-P;在低磷胁迫下,Jd23对Al-P的活化效果最好,活化率为32.39%,Qd7对Fe-P的活化效果最好,活化率为12.60%,Qd11次之,为11.81%,对O-P和Ca-P活化效果最好的是Qd11,活化率分别为32.69%和41.73%。苹果酸的分泌量与Fe-P的溶解量达到显著相关,琥珀酸分泌量与钙磷的溶解量呈显著正相关。低磷胁迫影响大豆根系有机酸的分泌及其对土壤难溶性磷的活化。大豆分泌的有机酸中以草酸和酒石酸为主;整体来说,Qd11和Qd7的分泌物对4种难溶性磷的活化效果较好。
中图分类号:
杨松花, 石贵阳, 王晶琴, 陈竹. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6): 1396-1406.
YANG Songhua, SHI Guiyang, WANG Jingqin, CHEN Zhu. Effects of soybean root exudates on insoluble phosphorus in soil under low phosphorus stress[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1396-1406.
有机酸 Organic acid | F值 F value | ||
---|---|---|---|
品种 Varieties | 磷水平 P level | 品种×磷水平 Varieties×P level | |
乙酸Acetic acid | 52.87** | 35.16** | 14.3** |
乳酸lactic acid | 25.32** | 26.82** | 21.26** |
延胡索酸Fumaric acid | 86.70** | 11.79** | 15.25** |
柠檬酸Citric acid | 48.06** | 0.23 | 45.50** |
琥珀酸Succinic acid | 29.54** | 114.86** | 27.77** |
苹果酸Malic acid | 117.60** | 21.60** | 156.12** |
草酸Oxalate | 105.60** | 0.01 | 22.06** |
酒石酸Tartaric acid | 509.29** | 0.78 | 184.96** |
总酸Total inorganic acid | 143.31** | 1.83** | 45.72** |
表1 根系分泌有机酸含量的双因素分析
Table 1 Two factor analysis of organic acid content secreted by roots
有机酸 Organic acid | F值 F value | ||
---|---|---|---|
品种 Varieties | 磷水平 P level | 品种×磷水平 Varieties×P level | |
乙酸Acetic acid | 52.87** | 35.16** | 14.3** |
乳酸lactic acid | 25.32** | 26.82** | 21.26** |
延胡索酸Fumaric acid | 86.70** | 11.79** | 15.25** |
柠檬酸Citric acid | 48.06** | 0.23 | 45.50** |
琥珀酸Succinic acid | 29.54** | 114.86** | 27.77** |
苹果酸Malic acid | 117.60** | 21.60** | 156.12** |
草酸Oxalate | 105.60** | 0.01 | 22.06** |
酒石酸Tartaric acid | 509.29** | 0.78 | 184.96** |
总酸Total inorganic acid | 143.31** | 1.83** | 45.72** |
图1 低磷胁迫下不同基因型大豆有机酸总分泌量的差异 柱上无相同字母的代表不同品种在同一处理下有显著(P<0.05)差异。ns表示同一品种的有机酸含量在不同磷水平下无显著性差异,*表示在0.05水平上有显著差异,**表示在0.01水平上有极显著差异。误差线为标准差。Td,铁豆40号;Cd,川豆14;Qd11,黔豆11号;Tf,铁丰31号;Dd,滇86-4;Ax,矮选;Jd23,晋豆23号;Jd12,冀豆12号;Fd,汾豆62号;Qd7,黔豆7号。下同。
Fig.1 Difference of total organic acid secretion in different soybean genotypes under low phosphorus stress Different letters on the bars represent significant (P<0.05) differences among varieties under the same treatment, ns indicates that there is no significant difference in organic acid content under different phosphorus levels for the same variety, * indicates significant difference at 0.05 level, ** indicates very significant difference at 0.01 level. The error line is the standard deviation. Td, Tiedou 40; Cd, Chuandou 14; Qd11, Qiandou 11; Tf, Tiefeng 31; Dd, Dian 86-4; Ax, Aixuan; Jd23, Jindou 23; Jd12, Jidou 12; Fd, Fendou 62; Qd7, Qiandou 7. The same as below.
大豆品种 Soybean varieties | 磷水平 P level | 有机酸种类及分泌量Type and secretion of organic acids | |||||||
---|---|---|---|---|---|---|---|---|---|
乙酸 Acetic acid | 乳酸 lactic acid | 延胡索酸 Fumaric acid | 柠檬酸 Citric acid | 琥珀酸 Succinic acid | 苹果酸 Malic acid | 草酸 Oxalate | 酒石酸 Tartaric acid | ||
Td | LP | 0.109± 0.015 c | 0.236± 0.051 a | 0.139± 0.020 b | 0.125± 0.011 a | 2.165± 0.287 b | 0.361± 0.041 c | 9.293± 0.968 d | 0.178± 0.051 e |
NP | 0.051± 0.006 f | 0.143± 0.034 b | 0.097± 0.008 cd | 0.041± 0.010 cd | 1.027± 0.265 cd | 0.483± 0.069 b | 28.050± 8.041 a | 8.403± 1.525 b | |
Cd | LP | 0.078± 0.005 d | 0.119± 0.008 cd | 0.069± 0.007 e | 0.086± 0.003 b | 1.698± 0.274 c | 0.124± 0.031 f | 30.660± 3.342 a | 0.159± 0.017 e |
NP | 0.073± 0.013 de | 0.143± 0.027 b | 0.099± 0.011 cd | 0.104± 0.020 cd | 1.285± 0.212 bc | 0.976± 0.153 a | 25.850± 3.139 a | 7.042± 0.421 c | |
Qd11 | LP | 0.038± 0.010 e | 0.174± 0.037 b | 0.100± 0.010 c | 0.114± 0.014 a | 1.309± 0.204 de | 0.101± 0.003 fg | 15.930± 1.357 b | 0.118± 0.030 e |
NP | 0.064± 0.014 ef | 0.126± 0.028 bc | 0.089± 0.007 cd | 0.037± 0.002 d | 1.702± 0.213 a | 0.045± 0.006 e | 3.025± 0.469 b | 1.710± 0.443 f | |
Tf | LP | 0.032± 0.007 e | 0.103± 0.028 de | 0.084± 0.009 cde | 0.068± 0.010 c | 1.604 0± 0.302 cd | 0.082± 0.007 fg | 3.856± 0.651 e | 0.089± 0.003 e |
NP | 0.082± 0.008 cde | 0.110± 0.009 bc | 0.067± 0.008 ef | 0.053± 0.003 c | 1.459± 0.136 ab | 0.065± 0.006 de | 3.200± 0.493 b | 1.898± 0.358 f | |
Dd | LP | 0.100± 0.013 cd | 0.065± 0.005 ef | 0.083± 0.014 cde | 0.056± 0.017 c | 3.030± 0.217 a | 0.054± 0.003 g | 12.080± 0.459 c | 0.149± 0.042 e |
NP | 0.107± 0.009 c | 0.230± 0.007 a | 0.100± 0.008 c | 0.091± 0.002 c | 0.866± 0.088 def | 0.156± 0.010 cd | 5.156± 0.599 b | 4.781± 0.071 d | |
Ax | LP | 0.139± 0.027 b | 0.146± 0.004 bc | 0.089± 0.009 cd | 0.034± 0.006 de | 1.059± 0.085 e | 0.510± 0.019 b | 1.923± 0.308 ef | 12.410± 0.303 b |
NP | 0.179± 0.026 a | 0.204± 0.037 a | 0.085± 0.014 d | 0.035± 0.007 d | 0.729± 0.100 ef | 0.157± 0.022 cd | 2.374± 0.539 b | 2.127± 0.574 ef | |
Jd23 | LP | 0.025± 0.001 e | 0.036± 0.004 f | 0.080± 0.002 de | 0.023± 0.002 def | 1.060± 0.056 e | 0.295± 0.039 d | 1.464± 0.178 f | 19.906± 0.901 a |
NP | 0.140± 0.022 b | 0.209± 0.024 a | 0.069± 0.005 e | 0.036± 0.005 d | 1.002± 0.170 cde | 0.161± 0.011 cd | 2.800± 0.160 b | 15.880± 0.548 a | |
Jd12 | LP | 0.041± 0.003 e | 0.040± 0.006 f | 0.217± 0.007 a | 0.019± 0.003 ef | 1.680± 0.057 c | 0.231± 0.002 e | 1.448± 0.142 f | 12.234± 0.873 b |
NP | 0.096± 0.003 cd | 0.085± 0.012 c | 0.156± 0.007 a | 0.088± 0.006 ab | 0.757± 0.025 def | 0.191± 0.010 c | 3.327± 0.119 b | 4.922± 0.903 d | |
Fd | LP | 0.194± 0.038 a | 0.035± 0.002 f | 0.068± 0.002 e | 0.013± 0.001 f | 0.638± 0.009 f | 0.108± 0.019 fg | 1.255± 0.290 f | 5.796± 0.251 c |
NP | 0.920± 0.008 a | 0.043± 0.009 d | 0.054± 0.005 f | 0.036± 0.002 d | 0.628± 0.021 f | 0.065± 0.008 de | 1.905± 0.242 b | 1.241± 0.216 f | |
Qd7 | LP | 0.083± 0.007 cd | 0.120± 0.021 cd | 0.085± 0.007 cde | 0.037± 0.008 d | 1.276± 0.071 de | 1.047± 0.065 a | 1.732± 0.092 ef | 1.437± 0.165 d |
NP | 0.083± 0.012 cde | 0.090± 0.009 c | 0.118± 0.008 b | 0.043± 0.006 cd | 1.274± 0.126 bc | 0.088± 0.011 de | 3.497± 0.094 b | 3.195± 0.257 e |
表2 不同磷水平下大豆根系有机酸分泌量
Table 2 Amount of organic acids secreted by soybean roots under different phosphorus levels mg·h-1·g-1
大豆品种 Soybean varieties | 磷水平 P level | 有机酸种类及分泌量Type and secretion of organic acids | |||||||
---|---|---|---|---|---|---|---|---|---|
乙酸 Acetic acid | 乳酸 lactic acid | 延胡索酸 Fumaric acid | 柠檬酸 Citric acid | 琥珀酸 Succinic acid | 苹果酸 Malic acid | 草酸 Oxalate | 酒石酸 Tartaric acid | ||
Td | LP | 0.109± 0.015 c | 0.236± 0.051 a | 0.139± 0.020 b | 0.125± 0.011 a | 2.165± 0.287 b | 0.361± 0.041 c | 9.293± 0.968 d | 0.178± 0.051 e |
NP | 0.051± 0.006 f | 0.143± 0.034 b | 0.097± 0.008 cd | 0.041± 0.010 cd | 1.027± 0.265 cd | 0.483± 0.069 b | 28.050± 8.041 a | 8.403± 1.525 b | |
Cd | LP | 0.078± 0.005 d | 0.119± 0.008 cd | 0.069± 0.007 e | 0.086± 0.003 b | 1.698± 0.274 c | 0.124± 0.031 f | 30.660± 3.342 a | 0.159± 0.017 e |
NP | 0.073± 0.013 de | 0.143± 0.027 b | 0.099± 0.011 cd | 0.104± 0.020 cd | 1.285± 0.212 bc | 0.976± 0.153 a | 25.850± 3.139 a | 7.042± 0.421 c | |
Qd11 | LP | 0.038± 0.010 e | 0.174± 0.037 b | 0.100± 0.010 c | 0.114± 0.014 a | 1.309± 0.204 de | 0.101± 0.003 fg | 15.930± 1.357 b | 0.118± 0.030 e |
NP | 0.064± 0.014 ef | 0.126± 0.028 bc | 0.089± 0.007 cd | 0.037± 0.002 d | 1.702± 0.213 a | 0.045± 0.006 e | 3.025± 0.469 b | 1.710± 0.443 f | |
Tf | LP | 0.032± 0.007 e | 0.103± 0.028 de | 0.084± 0.009 cde | 0.068± 0.010 c | 1.604 0± 0.302 cd | 0.082± 0.007 fg | 3.856± 0.651 e | 0.089± 0.003 e |
NP | 0.082± 0.008 cde | 0.110± 0.009 bc | 0.067± 0.008 ef | 0.053± 0.003 c | 1.459± 0.136 ab | 0.065± 0.006 de | 3.200± 0.493 b | 1.898± 0.358 f | |
Dd | LP | 0.100± 0.013 cd | 0.065± 0.005 ef | 0.083± 0.014 cde | 0.056± 0.017 c | 3.030± 0.217 a | 0.054± 0.003 g | 12.080± 0.459 c | 0.149± 0.042 e |
NP | 0.107± 0.009 c | 0.230± 0.007 a | 0.100± 0.008 c | 0.091± 0.002 c | 0.866± 0.088 def | 0.156± 0.010 cd | 5.156± 0.599 b | 4.781± 0.071 d | |
Ax | LP | 0.139± 0.027 b | 0.146± 0.004 bc | 0.089± 0.009 cd | 0.034± 0.006 de | 1.059± 0.085 e | 0.510± 0.019 b | 1.923± 0.308 ef | 12.410± 0.303 b |
NP | 0.179± 0.026 a | 0.204± 0.037 a | 0.085± 0.014 d | 0.035± 0.007 d | 0.729± 0.100 ef | 0.157± 0.022 cd | 2.374± 0.539 b | 2.127± 0.574 ef | |
Jd23 | LP | 0.025± 0.001 e | 0.036± 0.004 f | 0.080± 0.002 de | 0.023± 0.002 def | 1.060± 0.056 e | 0.295± 0.039 d | 1.464± 0.178 f | 19.906± 0.901 a |
NP | 0.140± 0.022 b | 0.209± 0.024 a | 0.069± 0.005 e | 0.036± 0.005 d | 1.002± 0.170 cde | 0.161± 0.011 cd | 2.800± 0.160 b | 15.880± 0.548 a | |
Jd12 | LP | 0.041± 0.003 e | 0.040± 0.006 f | 0.217± 0.007 a | 0.019± 0.003 ef | 1.680± 0.057 c | 0.231± 0.002 e | 1.448± 0.142 f | 12.234± 0.873 b |
NP | 0.096± 0.003 cd | 0.085± 0.012 c | 0.156± 0.007 a | 0.088± 0.006 ab | 0.757± 0.025 def | 0.191± 0.010 c | 3.327± 0.119 b | 4.922± 0.903 d | |
Fd | LP | 0.194± 0.038 a | 0.035± 0.002 f | 0.068± 0.002 e | 0.013± 0.001 f | 0.638± 0.009 f | 0.108± 0.019 fg | 1.255± 0.290 f | 5.796± 0.251 c |
NP | 0.920± 0.008 a | 0.043± 0.009 d | 0.054± 0.005 f | 0.036± 0.002 d | 0.628± 0.021 f | 0.065± 0.008 de | 1.905± 0.242 b | 1.241± 0.216 f | |
Qd7 | LP | 0.083± 0.007 cd | 0.120± 0.021 cd | 0.085± 0.007 cde | 0.037± 0.008 d | 1.276± 0.071 de | 1.047± 0.065 a | 1.732± 0.092 ef | 1.437± 0.165 d |
NP | 0.083± 0.012 cde | 0.090± 0.009 c | 0.118± 0.008 b | 0.043± 0.006 cd | 1.274± 0.126 bc | 0.088± 0.011 de | 3.497± 0.094 b | 3.195± 0.257 e |
[1] | 刘海旭, 吴俊江, 王金生, 等. 大豆耐低磷研究进展[J]. 大豆科学, 2017, 36(4): 639-644. |
LIU H X, WU J J, WANG J S, et al. Progress of research on tolerance to low-phosphorus stress in soybean[J]. Soybean Science, 2017, 36(4): 639-644. (in Chinese with English abstract) | |
[2] | 任海红, 刘学义, 李贵全. 大豆耐低磷胁迫研究进展[J]. 分子植物育种, 2008, 6(2): 316-322. |
REN H H, LIU X Y, LI G Q. Advances of soybean tolerant to low phosphorus stress[J]. Molecular Plant Breeding, 2008, 6(2): 316-322. (in Chinese with English abstract) | |
[3] | 张福锁. 环境胁迫与植物根际营养[M]. 北京: 中国农业出版社, 1998. |
[4] | GARDNER W K, BARBER D A, PARBERY D G. The acquisition of phosphorus by Lupinus albus L[J]. Plant and Soil, 1983, 70(1): 107-124. |
[5] | GARDNER W K, PARBERY D G, BARBER D A. The acquisition of phosphorus by Lupinus albus L[J]. Plant and Soil, 1982, 68(1): 33-41. |
[6] | AE N, ARIHARA J, OKADA K, et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science, 1990, 248(4954): 477-480. |
[7] | SUBBARAO G V, AE N, OTANI T. Genetic variation in acquisition, and utilization of phosphorus from iron-bound phosphorus in pigeonpea[J]. Soil Science and Plant Nutrition, 1997, 43(3): 511-519. |
[8] | SHEN H, YAN X L, ZHAO M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum-and iron-bound phosphates[J]. Environmental and Experimental Botany, 2002, 48(1): 1-9. |
[9] | 赵明, 沈宏, 严小龙. 不同菜豆基因型根系对难溶性磷的活化吸收[J]. 植物营养与肥料学报, 2002, 8(4): 435-440. |
ZHAO M, SHEN H, YAN X L. Mobilization and uptake of insoluble phosphorus by different common bean genotyes[J]. Plant Nutrition and Fertilizing Science, 2002, 8(4): 435-440. (in Chinese with English abstract) | |
[10] | 兰忠明, 林新坚, 张伟光, 等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响[J]. 中国农业科学, 2012, 45(8): 1521-1531. |
LAN Z M, LIN X J, ZHANG W G, et al. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus[J]. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. (in Chinese with English abstract) | |
[11] | 陈佰岩, 郑毅, 汤利. 磷胁迫条件下小麦、蚕豆根系分泌物对红壤磷的活化[J]. 云南农业大学学报, 2009, 24(6): 869-875. |
CHEN B Y, ZHENG Y, TANG L. Mobilizing phosphorus in red soils by root exudates of wheat and broadbean under phosphorus stress condition[J]. Journal of Yunnan Agricultural University, 2009, 24(6): 869-875. (in Chinese with English abstract) | |
[12] | 杨利宁, 敖特根·白银, 李秋凤, 等. 苜蓿根系分泌物对土壤中难溶性磷的影响[J]. 草业科学, 2015, 32(8): 1216-1221. |
YANG L N, AOTEGEN·BAIYIN, LI Q F, et al. Effects of alfalfa root exudates on insoluble phosphorus in soil[J]. Pratacultural Science, 2015, 32(8): 1216-1221. (in Chinese with English abstract) | |
[13] | 王永壮, 陈欣, 史奕, 等. 低分子量有机酸对土壤磷活化及其机制研究进展[J]. 生态学杂志, 2018, 37(7): 2189-2198. |
WANG Y Z, CHEN X, SHI Y, et al. Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms[J]. Chinese Journal of Ecology, 2018, 37(7): 2189-2198. (in Chinese with English abstract) | |
[14] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[15] | 陆文龙, 曹一平, 张福锁. 根分泌的有机酸对土壤磷和微量元素的活化作用[J]. 应用生态学报, 1999, 10(3): 379-382. |
LU W L, CAO Y P, ZHANG F S. Role of root exuded organic acids in mobilization of soil phosphorus and micronutrients[J]. Chinese Journal of Applied Ecology, 1999, 10(3): 379-382. (in Chinese with English abstract) | |
[16] | 申建波, 张福锁, 毛达如. 磷胁迫下大豆根分泌有机酸的动态变化[J]. 中国农业大学学报, 1998, 3(S3): 44-48. |
SHEN J B, ZHANG F S, MAO D R. Dynamics of low-molecular-weight organic acids in root exudates of soybean under P-deficiency[J]. Journal of China Agricultural University, 1998, 3(S3): 44-48. (in Chinese with English abstract) | |
[17] | HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237(2): 173-195. |
[18] | 张振海, 陈琰, 韩胜芳, 等. 低磷胁迫对大豆根系生长特性及分泌H+和有机酸的影响[J]. 中国油料作物学报, 2011, 33(2): 135-140. |
ZHANG Z H, CHEN Y, HAN S F, et al. Effect of P deficiency stress on soybean root system and its secretion of H+ and organic acid[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 135-140. (in Chinese with English abstract) | |
[19] | 王美丽, 严小龙. 大豆根形态和根分泌物特性与磷效率[J]. 华南农业大学学报, 2001, 22(3): 1-4. |
WANG M L, YAN X L. Characteristics on root morphology and root exudation of soybean in relation to phosphorus efficiency[J]. Journal of South China Agricultural University, 2001, 22(3): 1-4. (in Chinese with English abstract) | |
[20] | 田中民, 秦芳玲, 王波. 缺磷白羽扇豆根系分泌物收集方法的比较研究[J]. 西北农林科技大学学报(自然科学版), 2003, 31(4): 154-158. |
TIAN Z M, QIN F L, WANG B. Comparative studies on methods of collecting root exudates from phosphorus deficient white lupin[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2003, 31(4): 154-158. (in Chinese with English abstract) | |
[21] | 束良佐. 生长介质和局部供磷对白羽扇豆排根形成和柠檬酸分泌的影响[D]. 北京: 中国农业大学, 2005. |
SHU L Z. Effects of growth medium and localized phosphorus supply on cluster root formation and citrate exudation by Lupinus albus[D]. Beijing: China Agricultural University, 2005. (in Chinese with English abstract) | |
[22] | 秦丽凤. 不同木豆品种对低磷与铝毒胁迫的适应性反应及其机理研究[D]. 南宁: 广西大学, 2004. |
QIN L F. The adaptable responses of different cultivars of pigeon pea and corresponding mechanisms under P-deficiency stress and Al-toxicity stress[D]. Nanning: Guangxi University, 2004. (in Chinese with English abstract) | |
[23] | 张俊伶. 植物营养学[M]. 北京: 中国农业大学出版社, 2021. |
[24] | 李姣姣, 梁翠月, 廖红. 低磷胁迫对大豆苹果酸转运子GmALMT家族的表达调控[C]// 中国作物学会,中国细胞生物学学会,中国遗传学会,中国植物生理与分子生物学会,中国植物学会.2013全国植物生物学大会论文集, 2013. |
[25] | CANARINI A, KAISER C, MERCHANT A, et al. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli[J]. Frontiers in Plant Science, 2019, 10: 157. |
[26] | CHEN Z C, LIAO H. Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. Journal of Genetics and Genomics, 2016, 43(11): 631-638. |
[27] | 章爱群, 贺立源, 赵会娥, 等. 有机酸对不同磷源条件下土壤无机磷形态的影响[J]. 应用与环境生物学报, 2009, 15(4): 474-478. |
ZHANG A Q, HE L Y, ZHAO H E, et al. Effect of organic acids on inorganic phosphorus transformation in soil with different phosphorus sources[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(4): 474-478. (in Chinese with English abstract) | |
[28] | 胡红青, 廖丽霞, 王兴林. 低分子量有机酸对红壤无机态磷转化及酸度的影响[J]. 应用生态学报, 2002, 13(7): 867-870. |
HU H Q, LIAO L X, WANG X L. Effect of low molecular weight organic acids on inorganic phosphorus transformation in red soil and its acidity[J]. Chinese Journal of Applied Ecology, 2002, 13(7): 867-870. (in Chinese with English abstract) | |
[29] | 王树起, 韩晓增, 严君, 等. 低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响[J]. 生态学杂志, 2009, 28(8): 1550-1554. |
WANG S Q, HAN X Z, YAN J, et al. Effects of low molecular weight organic acids on P accumulation in soybean(Glycine max L.) and inorganic P form transformation in soil[J]. Chinese Journal of Ecology, 2009, 28(8): 1550-1554. (in Chinese with English abstract) | |
[30] | 龚松贵, 王兴祥, 张桃林, 等. 低分子量有机酸对红壤无机磷活化的作用[J]. 土壤学报, 2010, 47(4): 692-697. |
GONG S G, WANG X X, ZHANG T L, et al. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids[J]. Acta Pedologica Sinica, 2010, 47(4): 692-697. (in Chinese with English abstract) | |
[31] | 余文煜. 低分子有机酸、盐对南方红壤森林土壤磷的释放规律研究[D]. 福州: 福建农林大学, 2010. |
YU W Y. Study on the effect of low-molecular-weight organic acids/salt on phosphorus release of southern forest red soil[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese with English abstract) | |
[32] | STROM L, OWEN A G, GODBOLD D L, et al. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots[J]. Soil Biology and Biochemistry, 2002, 34(5):703-710. |
[33] | 刘慧, 栗杰, 贺云龙, 等. 外源低分子量有机酸对土壤钙、磷释放动力学特性的影响[J]. 北方园艺, 2016(23): 163-167. |
LIU H, LI J, HE Y L, et al. Effect of exogenous low molecular weight organic acids on soil calcium, phosphorus release kinetics characteristics[J]. Northern Horticulture, 2016(23): 163-167. (in Chinese with English abstract) |
[1] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[2] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[3] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. |
[4] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[5] | 赵书慧, 张振华, 欧张丹, 田茂平, 陈玉梅, 赵紫薇. 国内农作物根系分泌物研究热点的初步探析[J]. 浙江农业学报, 2023, 35(3): 534-546. |
[6] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[7] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[8] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[9] | 刘娜, 范翘楚, 周佳, 宋雅静, 张古文, 冯志娟, 卜远鹏, 王斌, 龚亚明. 菜用大豆炭疽病病原菌的分离鉴定与防治[J]. 浙江农业学报, 2022, 34(12): 2682-2688. |
[10] | 孟娜, 薛辉, 魏明, 魏胜华. 氯通道抑制剂缓解栽培大豆盐伤害的离子特征[J]. 浙江农业学报, 2022, 34(10): 2095-2104. |
[11] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[12] | 张伟梅, 张古文, 冯志娟, 刘娜, 王斌, 卜远鹏. 菜用大豆籽粒中蔗糖的遗传与调控机制研究进展[J]. 浙江农业学报, 2021, 33(12): 2446-2456. |
[13] | 夏江英, 杨菊, 宋天浩, 庞莲凤, 叶婷, 任志华, 邓俊良. 维生素C对β-伴大豆球蛋白诱导的仔猪肠上皮细胞炎性损伤的保护作用[J]. 浙江农业学报, 2021, 33(11): 2017-2025. |
[14] | 杨菊, 邓俊良, 夏江英, 宋天浩, 庞莲凤, 任志华. 维生素A对大豆7S球蛋白致仔猪肠上皮细胞屏障功能损伤的影响[J]. 浙江农业学报, 2021, 33(11): 2026-2033. |
[15] | 徐玥, 胥雅馨, 黄兴军, 吴树, 陈国栋, 吴全忠, 翟云龙. 根瘤菌接种方式对复播大豆干物质积累与产量的影响[J]. 浙江农业学报, 2021, 33(10): 1808-1816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||