浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 503-514.DOI: 10.3969/j.issn.1004-1524.20230300
李天恩1,2(), 周思含1,2, 孙洪超2, 付媛2, 石团员2,*(
), 闫文朝1,*(
)
收稿日期:
2023-03-10
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
李天恩(1996—),男,河南周口人,硕士研究生,研究方向为动物寄生虫病学。E-mail: litianen0509@163.com
通讯作者:
*石团员,E-mail:基金资助:
LI Tian’en1,2(), ZHOU Sihan1,2, SUN Hongchao2, FU Yuan2, SHI Tuanyuan2,*(
), YAN Wenchao1,*(
)
Received:
2023-03-10
Online:
2024-03-25
Published:
2024-04-09
摘要:
柔嫩艾美耳球虫(Eimeria tenella)是一种严重危害养鸡业健康发展的高致病性原虫,致密颗粒蛋白(dense granule proteins, GRAs)是顶复合器门原虫胞内寄生重要功能蛋白,具有较高的免疫学应用价值,然而目前尚未有关于球虫致密颗粒蛋白的确切报道。为发掘柔嫩艾美耳球虫GRAs并研究其功能,采用生物信息学、分子生物学、免疫学等技术从E. tenella北京株中鉴定到2种假定致密颗粒蛋白(hypothetical dense granule protein, hEtGRA)hEtGRA12、hEtGRA9,并用纯化后的蛋白分别免疫小鼠制备多克隆抗体,用ELISA、Western blot方法检测2种蛋白的抗原性。分子克隆结果表明,hEtGRA12、hEtGRA9基因编码区长度分别为1 188、1 110 bp,分别编码395、369个氨基酸,与其他顶复合器门原虫致密颗粒蛋白GRA12、GRA9物种间相似性分别为28.8%~39.6%、27.5%~29.5%;SDS-PAGE结果显示,重组蛋白rhEtGRA12、rhEtGRA9条带大小分别为63.6、67.0 ku;ELISA与Western blot结果表明,重组蛋白rhEtGRA12、rhEtGRA9均能诱导小鼠产生较高的抗体水平,且均可被鸡抗E. tenella阳性血清识别,表明具有较好的抗原性。该研究鉴定到2种球虫假定致密颗粒蛋白基因hEtGRA12、hEtGRA9,获得了重组蛋白rhEtGRA12、rhEtGRA9,为球虫致密颗粒蛋白基因功能和免疫应用研究奠定了基础。
中图分类号:
李天恩, 周思含, 孙洪超, 付媛, 石团员, 闫文朝. 鸡柔嫩艾美耳球虫2种假定致密颗粒蛋白基因的克隆与表达[J]. 浙江农业学报, 2024, 36(3): 503-514.
LI Tian’en, ZHOU Sihan, SUN Hongchao, FU Yuan, SHI Tuanyuan, YAN Wenchao. Cloning and expression analysis of two hypothetical dense granule protein genes of Eimeria tenella in chickens[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 503-514.
假定致密颗粒蛋白基因 Hypothetical dense granule protein gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
ETH_00023950 | ATGGGATTGACTGGCTTTT | TCATGAGTCTCCCTTACTC |
ETH_00031740 | ATGGCGCCCCGGCTTTCC | CTAGGCCGCCTCCTCCTCGTTGTCC |
ETH_00024035 | ATGCGATCCTCGCAGCGT | TTAATTTCTCTTCGAGGCCG |
ETH_00028475 | ATGCCCCACCACGTGCTGG | TCAGCAGAGAAAGGCTGCATAGC |
ETH_00009660 | ATGGTATATCTGTTATTGCC | CTAGCTAGCCAAGTAGGCACTTGCC |
ETH_00025090 | ATGCCTGCAGCTGCAGCTCCC | TCAAAACTGCATCTCCAGCAGCAGC |
ETH_00023930 | ATGGTTGTGTCGTTGATTGTGTGTG | TTAACTTTGCGCCCTCTCTGCTTCA |
ETH_00035235 | ATGAATGAAGTCGAAGATGTCC | TCAGCACAGCAGGCCGCAGCCCACC |
ETH_00030725 | ATGCCCTTAAAGATGGCTTTGC | TTAGTCATTTGTTGCTGTAGCAACA |
ETH_00010075 | ATGCGGCGTCTGCAGCTGAACT | TGTTGCTGCTTCTGCTGCTGCTGCT |
ETH_00032355 | ATGAAAATGAAAAAAGAAAATC | TCATTCATCTCCAATCCACATCCGC |
表1 克隆E. tenella假定致密颗粒蛋白基因序列所用引物
Table 1 Primers for cloning dense granule protein hypothetical genes in E. tenella
假定致密颗粒蛋白基因 Hypothetical dense granule protein gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
ETH_00023950 | ATGGGATTGACTGGCTTTT | TCATGAGTCTCCCTTACTC |
ETH_00031740 | ATGGCGCCCCGGCTTTCC | CTAGGCCGCCTCCTCCTCGTTGTCC |
ETH_00024035 | ATGCGATCCTCGCAGCGT | TTAATTTCTCTTCGAGGCCG |
ETH_00028475 | ATGCCCCACCACGTGCTGG | TCAGCAGAGAAAGGCTGCATAGC |
ETH_00009660 | ATGGTATATCTGTTATTGCC | CTAGCTAGCCAAGTAGGCACTTGCC |
ETH_00025090 | ATGCCTGCAGCTGCAGCTCCC | TCAAAACTGCATCTCCAGCAGCAGC |
ETH_00023930 | ATGGTTGTGTCGTTGATTGTGTGTG | TTAACTTTGCGCCCTCTCTGCTTCA |
ETH_00035235 | ATGAATGAAGTCGAAGATGTCC | TCAGCACAGCAGGCCGCAGCCCACC |
ETH_00030725 | ATGCCCTTAAAGATGGCTTTGC | TTAGTCATTTGTTGCTGTAGCAACA |
ETH_00010075 | ATGCGGCGTCTGCAGCTGAACT | TGTTGCTGCTTCTGCTGCTGCTGCT |
ETH_00032355 | ATGAAAATGAAAAAAGAAAATC | TCATTCATCTCCAATCCACATCCGC |
图1 hEtGRA12、hEtGRA9基因的克隆 M,DNA marker;1,hEtGRA12基因片段;2,hEtGRA9基因片段。
Fig.1 Cloning of hEtGRA12 gene and hEtGRA9 gene M, DNA maker; 1, hEtGRA12 gene fragment; 2, hEtGRA9 gene fragment.
图2 hEtGRA12蛋白同源性与系统发育分析 A,同源性分析;B,序列相似性分析;C,亲缘关系分析,△表示hEtGRA12蛋白序列。
Fig.2 Homology and phylogenetic analysis of hEtGRA12 protein A, Analysis of homolog; B, Analysis of sequence similarity; C, Analysis of kinship, △ represented sequence of hEtGRA12 protein.
图3 hEtGRA9蛋白序列相似性分析 A,hEtGRA9与TgGRA9蛋白序列相似性分析;B,hEtGRA9与BbGRA9蛋白序列相似性分析。●,hEtGRA9蛋白序列;▲,TgGRA9蛋白序列;◆,BbGRA9蛋白序列。
Fig.3 Sequence similarity analysis of hEtGRA9 protein A, Sequence similarity analysis of hEtGRA9 and TgGRA9 protein; B, Sequence similarity analysis of hEtGRA9 and BbGRA9 protein. ●,Sequence of hEtGRA9 protein; ▲, Sequence of TgGRA9 protein; ◆, Sequence of BbGRA9 protein.
图4 hEtGRA12蛋白的生物信息学分析 A,信号肽预测;B,跨膜区预测;C,亲/疏水性分析;D,二级结构预测,蓝色代表α螺旋,紫色代表无规则卷曲,红色代表延伸链;E,抗原表位预测。图5同。
Fig.4 Bioinformatics analysis of EtGRA12 protein A, Prediction of signal peptide; B, Prediction of transmembrane region; C, Analysis of hydrophilic/hydrophobic; D, Prediction of secondary structure, blue represented α-helix, purple represented random coi, red represented extended strand; E, Prediction of antigen epitope. The same as in figure 5.
图6 蛋白功能结构域保守性分析 绿色,信号肽;蓝色,α螺旋;紫色,无规则卷曲;红色,延伸链。
Fig.6 Conservative analysis of protein functional domain Green, Signal peptide; Blue, α-Helix; Purple, Random coil; Red, Extended strand.
图7 hEtGRA12、hEtGRA9基因的重组表达 A,pET32a(+)-hEtGRA12质粒双酶切鉴定;B,hEtGRA12蛋白的表达纯化;C,pET32a(+)-hEtGRA9质粒双酶切鉴定;D,hEtGRA9蛋白的表达纯化。M1,DNA marker;M2,蛋白分子量标准;1,pET32a(+)-hEtGRA12质粒;2,pET32a(+)-hEtGRA12质粒双酶切产物;3,未纯化的hEtGRA12蛋白;4~5,纯化的hEtGRA12蛋白;6,pET32a(+)-hEtGRA9质粒;7,pET32a(+)-hEtGRA9质粒双酶切产物;8,未纯化的hEtGRA9蛋白;9,纯化的hEtGRA9蛋白。
Fig.7 Recombinant expression of hEtGRA12 and hEtGRA9 genes A, Identification of pET32a (+)-hEtGRA12 plasmid by double enzyme digestion; B, Expression and purification of hEtGRA12 protein; C, Identification of pET32a (+)-hEtGRA9 plasmid by double enzyme digestion; D, Expression and purification of hEtGRA9 protein; M1, DNA maker; M2, Protein maker; 1, pET32a (+)-hEtGRA12 plasmid; 2, Digestion product of pET32a(+)-hEtGRA12 plasmid; 3, Unpurified hEtGRA12 protein; 4-5, Purified hEtGRA12 protein; 6, pET32a(+)-hEtGRA9 plasmid; 7, Digestion product of pET32a(+)-hEtGRA9 plasmid; 8, Unpurified hEtGRA9 protein; 9, Purified hEtGRA9 protein.
图8 rhEtGRA12、rhEtGRA9抗原性分析 A,重组蛋白rhEtGRA12 Western blot分析;B,重组蛋白rhEtGRA9 Western blot分析;M,蛋白质分子量标准;1、4,阴性鸡血清;2、3,抗柔嫩艾美耳球虫阳性鸡血清;C,鼠抗rhEtGRA12、鼠抗rhEtGRA9多克隆抗体效价检测。
Fig.8 Antigenicity analysis of rhEtGRA12 and rhEtGRA9 A, Western blot analysis of recombinant protein rhEtGRA12; B, Western blot analysis of recombinant protein rhEtGRA9; M, Protein marker; 1 and 4, Negative chicken serum; 2 and 3, Anti-Eimeria tenella positive chicken serum; C, Detection of mouse anti-rhEtGRA12 and mouse anti-rhEtGRA9 polyclonal antibody titers.
[1] | SHIRLEY M W, IVENS A, GRUBER A, et al. The Eimeria genome projects: a sequence of events[J]. Trends in Parasitology, 2004, 20(5): 199-201. |
[2] | BLAKE D P, KNOX J, DEHAECK B, et al. Re-calculating the cost of coccidiosis in chickens[J]. Veterinary Research, 2020, 51(1): 115. |
[3] | CHENGAT PRAKASHBABU B, THENMOZHI V, LIMON G, et al. Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity[J]. Veterinary Parasitology, 2017, 233: 62-72. |
[4] | DALLOUL R A, LILLEHOJ H S. Poultry coccidiosis: recent advancements in control measures and vaccine development[J]. Expert Review of Vaccines, 2006, 5(1): 143-163. |
[5] | BLAKE D P, MARUGAN-HERNANDEZ V, TOMLEY F M. Spotlight on avian pathology: Eimeria and the disease coccidiosis[J]. Avian Pathology, 2021: 1-5. |
[6] | GUO A J, CAI J P, GONG W, et al. Transcriptome analysis in chicken cecal epithelia upon infection by Eimeria tenella in vivo[J]. PLoS One, 2013, 8(5): e64236. |
[7] | 李超, 顾小龙, 卢春霞, 等. 我国鸡球虫病流行病学研究进展[J]. 寄生虫与医学昆虫学报, 2018, 25(4): 230-241. |
LI C, GU X L, LU C X, et al. Studies on the prevalence of chicken coccidiosis in China[J]. Acta Parasitologica et Medica Entomologica Sinica, 2018, 25(4): 230-241. (in Chinese with English abstract) | |
[8] | FOSSUM O, JANSSON D S, ETTERLIN P E, et al. Causes of mortality in laying hens in different housing systems in 2001 to 2004[J]. Acta Veterinaria Scandinavica, 2009, 51(1): 3. |
[9] | CUI N, WANG X Z, WANG Q, et al. Effect of dual infection with Eimeria tenella and subgroup J avian leukosis virus on the cecal microbiome in specific-pathogen-free chicks[J]. Frontiers in Veterinary Science, 2017, 4: 177. |
[10] | CLARKE L, FODEY T L, CROOKS S R H, et al. A review of coccidiostats and the analysis of their residues in meat and other food[J]. Meat Science, 2014, 97(3): 358-374. |
[11] | NOACK S, CHAPMAN H D, SELZER P M. Anticoccidial drugs of the livestock industry[J]. Parasitology Research, 2019, 118(7): 2009-2026. |
[12] | 张思新, 汤新明, 李超, 等. 我国鸡球虫病疫苗研究进展[J]. 寄生虫与医学昆虫学报, 2018, 25(4): 254-261. |
ZHANG S X, TANG X M, LI C, et al. Progress in coccidiosis vaccine development for chickens in China[J]. Acta Parasitologica et Medica Entomologica Sinica, 2018, 25(4): 254-261. (in Chinese with English abstract) | |
[13] | GUPTA S K, SHUKLA P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications[J]. Critical Reviews in Biotechnology, 2016, 36(6): 1089-1098. |
[14] | BLACKMAN M J, BANNISTER L H. Apical organelles of Api complexa: biology and isolation by subcellular fractionation[J]. Molecular and Biochemical Parasitology, 2001, 117(1): 11-25. |
[15] | DASZAK P, BALL S J, PITTILO R M, et al. Ultrastructural evidence for dense granule exocytosis by first-generation merozoites of Eimeria tenella in vivo[J]. Parasitology Research, 1993, 79(3): 256-258. |
[16] | 汪明, 孔繁瑶. 毁灭泰泽球虫内生发育的超微结构研究 Ⅲ.小配子生殖与小配子[J]. 畜牧兽医学报, 1989, 20(1): 60-66. |
WANG M, KONG F Y. Ultrastructural studies on the endogenous development of Tyzzeria perniciosa, a coccidian parasite of pekin duck 3. microgametogenesis and the microgamete[J]. Chinese Journal of Animal and Veterinary Sciences, 1989, 20(1): 60-66. (in Chinese with English abstract) | |
[17] | MERCIER C, CESBRON-DELAUW M F. Toxoplasma secretory granules: one population or more?[J]. Trends in Parasitology, 2015, 31(2): 60-71. |
[18] | CESBRON-DELAUW M F, GENDRIN C, TRAVIER L, et al. Apicomplexa in mammalian cells: trafficking to the parasitophorous vacuole[J]. Traffic, 2008, 9(5): 657-664. |
[19] | PLATTNER F, SOLDATI-FAVRE D. Hijacking of host cellular functions by the Apicomplexa[J]. Annual Review of Microbiology, 2008, 62: 471-487. |
[20] | SINAI A P. Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane[J]. Sub-Cellular Biochemistry, 2008, 47: 155-164. |
[21] | MARTIN A M, LIU T, LYNN B C, et al. The Toxoplasma gondii parasitophorous vacuole membrane: transactions across the border[J]. The Journal of Eukaryotic Microbiology, 2007, 54(1): 25-28. |
[22] | REZAEI F, SARVI S, SHARIF M, et al. A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization[J]. Microbial Pathogenesis, 2019, 126: 172-184. |
[23] | SCORZA T, D’SOUZA S, LALOUP M, et al. A GRA1 DNA vaccine primes cytolytic CD8+ T cells to control acute Toxoplasma gondii infection[J]. Infection and Immunity, 2003, 71(1): 309-316. |
[24] | QUAN J H, CHU J Q, ISMAIL H A H A, et al. Induction of protective immune responses by a multiantigenic DNA vaccine encoding GRA7 and ROP1 of Toxoplasma gondii[J]. Clinical and Vaccine Immunology, 2012, 19(5): 666-674. |
[25] | VAZINI H, GHAFARIFAR F, SHARIFI Z, et al. Evaluation of immune responses induced by GRA7 and ROP2 genes by DNA vaccine cocktails against acute toxoplasmosis in BALB/c mice[J]. Avicenna Journal of Medical Biotechnology, 2018, 10(1): 2-8. |
[26] | SUN X F, WANG Z D, LI J P, et al. Evaluation of an indirect ELISA using recombinant granule antigen GRA1, GRA7 and soluble antigens for serodiagnosis of Toxoplasma gondii infection in chickens[J]. Research in Veterinary Science, 2015, 100: 161-164. |
[27] | COSTA J G, VILARIÑO M J. Semiquantitative Dot Blot with the GRA8 antigen to differentiate the stages of toxoplasmosis infection[J]. Journal of Microbiological Methods, 2018, 149: 9-13. |
[28] | TEIMOURI A, MODARRESSI M H, SHOJAEE S, et al. Development, optimization, and validation of an in-house Dot-ELISA rapid test based on SAG1 and GRA7 proteins for serological detection of Toxoplasma gondii infections[J]. Infection and Drug Resistance, 2019, 12: 2657-2669. |
[29] | LIU X Y, WANG Z D, EL-ASHRAM S, et al. Toxoplasma gondii oocyst-driven infection in pigs, chickens and humans in northeastern China[J]. BMC Veterinary Research, 2019, 15(1): 366. |
[30] | YBAÑEZ R H D, KYAN H, NISHIKAWA Y. Detection of antibodies against Toxoplasma gondii in cats using an immunochromatographic test based on GRA7 antigen[J]. The Journal of Veterinary Medical Science, 2020, 82(4): 441-445. |
[31] | 王英贺, 曹利利, 姚新华, 等. 弓形虫致密颗粒蛋白研究进展[J]. 动物医学进展, 2016, 37(8): 75-78. |
WANG Y H, CAO L L, YAO X H, et al. Progress on Toxoplasma gondii dense granule proteins[J]. Progress in Veterinary Medicine, 2016, 37(8): 75-78. (in Chinese with English abstract) | |
[32] | SIVALINGAM G N, SHEPHERD A J. An analysis of B-cell epitope discontinuity[J]. Molecular Immunology, 2012, 51(3/4): 304-309. |
[33] | 李仙春, 芦艳, 毛耀芳, 等. 鸡Prnp基因原核表达载体的构建及其在大肠埃希菌中的表达[J]. 浙江农业学报, 2020, 32(12): 2138-2146. |
LI X C, LU Y, MAO Y F, et al. Construction of prokaryotic expression vector of chicken Prnp gene and expression in Escherichia coli[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2138-2146. (in Chinese with English abstract) | |
[34] | HU D D, TANG X M, BEN MAMOUN C, et al. Efficient single-gene and gene family editing in the api complexan parasite Eimeria tenella using CRISPR-Cas9[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 128. |
[35] | MU B J, MENG Y J, LIU X X, et al. Research note: transcriptomic analysis of LMH cells in response to the overexpression of a hypothetical protein identified in Eimeria tenella SD-01 strain[J]. Poultry Science, 2022, 101(11): 102109. |
[1] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[2] | 刘琪, 曹影丽, 魏宁波, 杨侃侃, 梁月巧, 宋祥军, 邵颖, 涂健, 祁克宗. 鸡DDX41基因克隆表达、细胞定位及其在禽腺病毒4型感染调控天然免疫中的作用[J]. 浙江农业学报, 2023, 35(5): 1028-1036. |
[3] | 薛姣雄, 赵婷芳, 张倩, 唐青海, 高翠翠, 赵铖, 张妍, 全飞杨, 刘婷, 杨灿, 杨海, 王文秀. 犬冠状病毒S1蛋白特异性小分子抗体Fab的制备[J]. 浙江农业学报, 2023, 35(11): 2568-2583. |
[4] | 唐国亮, 张玉宝, 王若愚, 王亚军, 赵霞, 苏学思, 金卫杰. 魔芋花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2022, 34(11): 2471-2481. |
[5] | 朱寅初, 王宏宇, 云涛, 华炯钢, 叶伟成, 倪征, 陈柳, 张存. 浙江地区鹅星状病毒分离鉴定及其衣壳蛋白多克隆抗体的制备[J]. 浙江农业学报, 2022, 34(10): 2149-2159. |
[6] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[7] | 苏学思, 张玉宝, 王若愚, 王亚军, 唐国亮, 金卫杰. 车前草花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 104-111. |
[8] | 刘金玉, 黄鹰. 粟酒裂殖酵母SpTrz2蛋白全长和N端的原核表达与多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 34-42. |
[9] | 黄小珍, 乔中全, 曾慧杰, 李永欣, 何钢, 王晓明. 紫薇花器官发育调控基因LiFUL1的分离与表达分析[J]. 浙江农业学报, 2020, 32(7): 1206-1214. |
[10] | 陈韫陆, 单颖, 罗浩, 徐计东, 赵灵燕, 方维焕, 李肖梁. 猪Ⅲ型干扰素原核表达及其抗病毒效果研究[J]. 浙江农业学报, 2020, 32(5): 779-788. |
[11] | 蒲路莎, 苏世博, 陈肖韩, 赵丽丽, 陈洪岩. 鹅源星状病毒ORF2基因原核表达及遗传进化分析[J]. 浙江农业学报, 2020, 32(5): 789-797. |
[12] | 王元红, 邢雪, 李传峰, 朱杰, 王勇, 刘光清. 猫传染性腹膜炎病毒AH1905株N基因的生物信息学分析及原核表达[J]. 浙江农业学报, 2020, 32(3): 406-414. |
[13] | 王小朋, 赵靓, 刘自敏, 白彩霞, 杨侃侃, 张达, 孙裴, 蒋书东, 李永东, 王勇. 猪细小病毒7型Cap基因原核表达与生物信息学分析[J]. 浙江农业学报, 2020, 32(2): 200-209. |
[14] | 李仙春, 芦艳, 毛耀芳, 杨海峰, 余海山, 马永华, 万学瑞. 鸡Prnp基因原核表达载体的构建及其在大肠埃希菌中的表达[J]. 浙江农业学报, 2020, 32(12): 2138-2146. |
[15] | 陈章, 吴华健, 毛天骄, 韩业芹, 孙裴, 魏建忠, 李东风, 李郁. 猪链球菌2型制苗用菌株的筛选[J]. 浙江农业学报, 2020, 32(1): 57-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||