浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2471-2481.DOI: 10.3969/j.issn.1004-1524.2022.11.16
唐国亮1,2,3(), 张玉宝1,2,*(
), 王若愚1,2, 王亚军1,2, 赵霞1,2, 苏学思1,2,3, 金卫杰1,2,3
收稿日期:
2021-06-30
出版日期:
2022-11-25
发布日期:
2022-11-29
通讯作者:
张玉宝
作者简介:
*张玉宝,E-mail: zyubao@lzb.ac.cn基金资助:
TANG Guoliang1,2,3(), ZHANG Yubao1,2,*(
), WANG Ruoyu1,2, WANG Yajun1,2, ZHAO Xia1,2, SU Xuesi1,2,3, JIN Weijie1,2,3
Received:
2021-06-30
Online:
2022-11-25
Published:
2022-11-29
Contact:
ZHANG Yubao
摘要:
采用小RNA测序技术对甘肃省榆中县疑似感染病毒病的当归[(Angelica sinensis(Oliv.)Diels]样品进行测序鉴定,发现样品中含有魔芋花叶病毒(Konjac mosaic virus,KoMV),通过反转录PCR(RT-PCR)扩增KoMV衣壳蛋白(capsid protein,CP)的cp基因,克隆的KoMV cp基因连接原核表达载体pET-28a(+),导入E.coli RosettaTM(DE3)诱导表达蛋白,在Ni-NTA重力柱层析作用下纯化CP融合蛋白,并以此作为抗原免疫新西兰大耳白兔制备多克隆抗体。序列分析表明:KoMV cp基因片段大小为840 bp,编码280个氨基酸的外壳蛋白;与GenBank已注册同源性较高的KoMV分离物相比,核苷酸序列相似性为85.58%~99.41%,氨基酸序列相似性为89.32%~99.29%;KoMV的病毒种群分布存在明显的区域性和寄主差异。SDS-PAGE显示,不同温度诱导下KoMV CP融合蛋白在E.coli RosettaTM(DE3)中均以包涵体的形式大量表达,融合蛋白分子量为36 ku。间接ELISA和Western blot检测结果显示,制备的多克隆抗体效价达到32 000,能够与感染KoMV的当归叶片和纯化蛋白特异性结合,具有良好的特异性。本研究成功制备了当归KoMV CP融合蛋白的多克隆抗体IgG,为开发KoMV的血清学检测技术及CP蛋白的功能研究奠定了基础。
中图分类号:
唐国亮, 张玉宝, 王若愚, 王亚军, 赵霞, 苏学思, 金卫杰. 魔芋花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2022, 34(11): 2471-2481.
TANG Guoliang, ZHANG Yubao, WANG Ruoyu, WANG Yajun, ZHAO Xia, SU Xuesi, JIN Weijie. Prokaryotic expression of Konjac mosaic virus capsid protein and preparation of polyclonal antibody[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2471-2481.
图1 健康(A)及感染Konjac mosaic virus的田间当归植株(B, C)
Fig.1 Healthy Angelica sinensis plants (A) and Angelica sinensis plants infected by Konjac mosaic virus (B and C)
图2 KoMV cp基因PCR扩增 M,DNA 2000 marker;1,阴性对照;2、3,KoMV cp基因
Fig.2 PCR amplification of KoMV cp gene M, DNA marker; 1, Negative control; 2-3, KoMV cp gene
图4 KoMV CP重组蛋白的SDS-PAGE分析 A,KoMV CP蛋白的原核表达:M,蛋白质marker;1,pET-28a空载体对照;2,未经IPTG诱导的重组载体;3~5,16、28、37 ℃分别诱导20、12、4 h目标蛋白表达产物的上清;6~8,16、28、37 ℃分别诱导20、12、4 h目标蛋白表达产物的沉淀。B,KoMV CP蛋白的纯化:M,蛋白质marker;1,pET-28a空载体对照;2,未经IPTG诱导的重组载体;3,16 ℃诱导20 h目标蛋白表达产物的上清;4~5,纯化的重组KoMV CP蛋白。
Fig.4 SDS-PAGE analysis of recombinant KoMV CP A, Prokaryotic expression of recombinant KoMV CP:M, Protein marker; 1, Negative control of pET-28a without cp gene inserted; 2, Recombinant plasmid not induced by IPTG; 3-5, The supernatant of target protein expression product induced at 16, 28 and 37 ℃ for 20, 12 and 4 h, respectively; 6-8, The pellet of target protein expression product induced at 16, 28 and 37 ℃ for 20, 12 and 4 h, respectively. B, Purification of recombinant KoMV CP:M, Protein marker; 1, Negative control of pET-28a without cp gene inserted; 2, Recombinant plasmid not induced by IPTG; 3, The supernatant of target protein expression product induced at 16 ℃ for 20 h; 4-5, Purified recombinant KoMV CP protein.
图5 KoMV CP蛋白SDS-PAGE所分离蛋白的质谱图谱 A,a蛋白质谱鉴定。B,b蛋白质谱鉴定。
Fig.5 Mass spectrum of proteins isolated from KoMV CP protein by SDS-PAGE A, Identification of protein a by mass spectrometry. B, Identification of protein b by mass spectrometry.
血清稀释度 Dilution of serum | 抗血清D450 D450 of antiserum | 阴性血清D450 D450 of negative serum | P/N>2.0 |
---|---|---|---|
32 000 | 3.237 | 0.253 | + |
16 000 | 3.306 | 0.260 | + |
8 000 | 3.339 | 0.268 | + |
4 000 | 3.408 | 0.269 | + |
2 000 | 3.413 | 0.318 | + |
1 000 | 3.506 | 0.339 | + |
500 | 3.519 | 0.387 | + |
表1 ELISA测定KoMV CP抗血清效价
Table 1 Titer determination of prepared antiserum against recombinant KoMV CP by ELISA
血清稀释度 Dilution of serum | 抗血清D450 D450 of antiserum | 阴性血清D450 D450 of negative serum | P/N>2.0 |
---|---|---|---|
32 000 | 3.237 | 0.253 | + |
16 000 | 3.306 | 0.260 | + |
8 000 | 3.339 | 0.268 | + |
4 000 | 3.408 | 0.269 | + |
2 000 | 3.413 | 0.318 | + |
1 000 | 3.506 | 0.339 | + |
500 | 3.519 | 0.387 | + |
图6 Western blot鉴定KoMV CP多克隆抗体 M,蛋白质marker;1,健康当归样品;2~4,分别感染LSV、CMV和PLAMV的百合样品;5,感染LNYV的生菜样品;6,感染LMoV的百合样品;7,感染PVY的马铃薯样品;8,感染KoMV的当归样品;9,纯化的KoMV CP蛋白。
Fig.6 Western blot analysis of KoMV CP using rabbit polyclonal antibody M, Protein marker; 1, Negative control of healthy Angelica sinensis; 2-4, Extracts from lily samples infected with LSV, CMV and PLAMV, respectively; 5, Extracts from lettuce samples infected with LNYV; 6, Extracts from lily samples infected with LMoV; 7, Extracts from potato samples infected with PVY; 8, Extracts from Angelica sinensis samples infected with KoMV; 9, Purified KoMV CP protein.
[1] |
SHIMOYAMA J, KAMEYA-IWAKI M, HANADA K, et al. Konjak mosaic virus, a new Potyvirus infecting konjak, Amorphophallus konjac[J]. Japanese Journal of Phytopathology, 1992, 58(5): 706-712.
DOI URL |
[2] |
NISHIGUCHI M, YAMASAKI S, LU X Z, et al. Konjak mosaic virus: the complete nucleotide sequence of the genomic RNA and its comparison with other potyviruses[J]. Archives of Virology, 2006, 151(8): 1643-1650.
PMID |
[3] | 童勋章, 王亚军, 谢忠奎, 等. 百合斑驳病毒CP与CI基因的融合表达、多抗制备及其应用[J]. 植物病理学报, 2010, 40(40): 475-481. |
TONG X Z, WANG Y J, XIE Z K, et al. Production and application of antisera to expression product of CP and CI fusion gene of Lily mottle virus[J]. Acta Phytopathologica Sinica, 2010, 40(5): 475-481. (in Chinese with English abstract) | |
[4] |
ZHANG Y, WANG R Y, WANG J H, et al. A new Potyvirus first isolated and identified from Angelica sinensis[J]. Virus Genes, 2009, 39(1): 120-125.
DOI URL |
[5] |
LIAO M T, MOU D F, CHANG Y C, et al. Vector transmission of konjac mosaic virus to Calla lily(Zantedeschia spp.) by aphids[J]. Annals of Applied Biology, 2020, 177(3): 367-373.
DOI URL |
[6] |
MANIKONDA P, SRINIVAS K P, SUBBA REDDY C V, et al. Konjac mosaic virus naturally infecting three aroid plant species in Andhra pradesh, India[J]. Journal of Phytopathology, 2011, 159(2): 133-135.
DOI URL |
[7] |
HU W C, HUANG C H, LEE S C, et al. Detection of four Calla potyviruses by multiplex RT-PCR using nad5 mRNA as an internal control[J]. European Journal of Plant Pathology, 2009, 126(1): 43-52.
DOI URL |
[8] |
ÁGOSTON J, ALMÁSI A, SALÁNKI K, et al. First report of konjac mosaic virus in Zantedeschia from Hungary[J]. Journal of Plant Pathology, 2019, 101(4): 1217.
DOI URL |
[9] | MANIKONDA P, PUTHANKALAM S K, MASARAPU H, et al. Development of duplex RT-PCR for detection of Konjac mosaic virus and Spathiphyllum chlorotic vein banding virus in taro and peace lily[J]. Indian Journal of Biotechnology, 2015, 14(1): 120-122. |
[10] |
SHIMOYAMA J, HANADA K, TSUDA S, et al. Some physicochemical and serological properties of konjak mosaic virus and dasheen mosaic virus[J]. Japanese Journal of Phytopathology, 1992, 58(5): 713-718.
DOI URL |
[11] | 史雨红. 侵染中国天南星科药用植物马铃薯Y病毒属成员的分子生物学研究[D]. 杭州: 浙江大学, 2007. |
SHI Y H. Molecular characterization of potyviruses infecting aroid plants for medicinal use in China[D]. Hangzhou: Zhejiang University, 2007. (in Chinese with English abstract) | |
[12] |
ZHANG Y B, WANG R Y, XIE Z K, et al. Rapid visual detection of Japanese hornwort mosaic virus infecting Angelica sinensis by reverse transcription loop-mediated isothermal amplification[J]. Annals of Applied Biology, 2021, 178(3): 489-497.
DOI URL |
[13] | PHAM K, LANGEVELD S A, LEMMERS M E C, et al. Detection and identification of potyviruses in Zantedeschia[J]. Acta Horticulturae, 2002(568): 143-148. |
[14] | 罗延青, 丁铭, 方琦, 等. 侵染云南花魔芋的马铃薯Y病毒属病毒分离物的检测及分子鉴定[J]. 植物病理学报, 2009, 39(39): 88-90. |
LUO Y Q, DING M, FANG Q, et al. Detection and molecular identification of a Potyvirus isolate infecting Amorphophallus rivieri Durieu in Yunnan Province[J]. Acta Phytopathologica Sinica, 2009, 39(1): 88-90. (in Chinese with English abstract) | |
[15] | 宋云枝, 姜雅元, 毕吕杰, 等. 水稻黑条矮缩病毒外壳蛋白基因的克隆、原核表达及抗体制备[J]. 植物保护学报, 2014, 41(41): 35-40. |
SONG Y Z, JIANG Y Y, BI L J, et al. Cloning and prokaryotic expression of coat protein gene of Rice blackstreaked dwarf virus and preparation of its polyclonal antibody[J]. Acta Phytophylacica Sinica, 2014, 41(1): 35-40. (in Chinese with English abstract) | |
[16] |
苏学思, 张玉宝, 王若愚, 等. 车前草花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 104-111.
DOI |
SU X S, ZHANG Y B, WANG R Y, et al. Prokaryotic expression of Plantago asiatica mosaic virus capsid protein and preparation of its polyclonal antibody[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 104-111. (in Chinese with English abstract) | |
[17] | 车海彦, 曹学仁, 刘勇, 等. 利用小RNA深度测序技术鉴定海南南瓜病毒种类[J]. 热带作物学报, 2017, 38(38): 2106-2111. |
CHE H Y, CAO X R, LIU Y, et al. Identification of viruses from pumpkin in Hainan by small RNA deep sequencing technology[J]. Chinese Journal of Tropical Crops, 2017, 38(11): 2106-2111. (in Chinese with English abstract) | |
[18] | 苏秀, 徐毅, 陈莎, 等. 利用小RNA深度测序和组装技术鉴定紫藤花叶病病原[J]. 植物病理学报, 2015, 45(45): 88-92. |
SU X, XU Y, CHEN S, et al. Detection of viruses infecting Wisteria sinensis by deep sequencing and assembly of small RNA[J]. Acta Phytopathologica Sinica, 2015, 45(1): 88-92. (in Chinese with English abstract) | |
[19] | 王芳, 高正良, 周本国, 等. 利用小RNA高通量测序技术检测玉米病毒[J]. 植物病理学报, 2017, 47(47): 422-427. |
WANG F, GAO Z L, ZHOU B G, et al. Detection of viruses in maize by high-throughput sequencing of small RNA[J]. Acta Phytopathologica Sinica, 2017, 47(3): 422-427. (in Chinese with English abstract) | |
[20] | 严佳文, 袁启凤, 解璞, 等. 利用小RNA测序技术检测贵州西番莲病毒[J]. 热带作物学报, 2019, 40(40): 1577-1584. |
YAN J W, YUAN Q F, XIE P, et al. Identification of viruses infecting Passiflora edulis in Guizhou Province by small RNA sequencing[J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1577-1584. (in Chinese with English abstract) | |
[21] | 钱亚娟, 徐毅, 周琦, 等. 利用深度测序技术发掘植物病毒资源[J]. 中国科学: 生命科学, 2014, 44(44): 351-363. |
QIAN Y J, XU Y, ZHOU Q, et al. Application of next-generation sequencing technology for plant virus identification[J]. Scientia Sinica (Vitae), 2014, 44(4): 351-363. (in Chinese with English abstract) | |
[22] | 赵忠豪, 潘慧, 刘勇, 等. SRBSDV P8蛋白的多克隆抗体制备及其应用[J]. 杂交水稻, 2020, 35(35): 71-75. |
ZHAO Z H, PAN H, LIU Y, et al. Preparation and application of polyclonal antibodies against the small core protein P8 encoded by SRBSDV[J]. Hybrid Rice, 2020, 35(3): 71-75. (in Chinese with English abstract) | |
[23] |
GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J. Codon bias and heterologous protein expression[J]. Trends in Biotechnology, 2004, 22(7): 346-353.
DOI URL |
[24] | 任增亮, 堵国成, 陈坚, 等. 大肠杆菌高效表达重组蛋白策略[J]. 中国生物工程杂志, 2007, 27(27): 103-109. |
REN Z L, DU G C, CHEN J, et al. Strategies for high-level expression of recombinant protein in Escherichia coli[J]. China Biotechnology, 2007, 27(9): 103-109. (in Chinese with English abstract) | |
[25] |
张康, 张璇, 闫遵祥, 等. 牛病毒性腹泻病毒Core蛋白的原核表达及多克隆抗体制备[J]. 浙江农业学报, 2019, 31(11): 1819-1824.
DOI |
ZHANG K, ZHANG X, YAN Z X, et al. Prokaryotic expression of core protein of bovine viral diarrhoea viruses and preparation of polyclonal antibodies[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11): 1819-1824. (in Chinese with English abstract)
DOI |
|
[26] | 曾白华, 吕连华, 王开正, 等. 临床细菌学鉴定方法进展[J]. 西南军医, 2012, 14(14): 509-510. |
ZENG B H, LYU L H, WANG K Z, et al. Progress of clinical bacteriological identification methods[J]. Journal of Military Surgeon in Southwest China, 2012, 14(3): 509-510. (in Chinese) | |
[27] | 李航, 戚睿斌, 陈宗艳, 等. 外源蛋白表达系统及其应用的研究进展[J]. 黑龙江畜牧兽医, 2021,(07): 34-37,47. |
LI H, QI R B, CHEN Z Y, et al. Progress in research on foreign protein expression system and its application[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021,(07): 34-37,47. (in Chinese with English abstract) | |
[28] | 刘真喜. 重组hIGF-I工程菌的发酵及产物纯化的研究[D]. 广州: 中国解放军第一军医大学, 2001. |
LIU Z X. Studies on fermentation of the recombinant human insulin-like growth factor I engineering bacterial and purification of recombinant protein[D]. Guangzhou: The First Military Medical University of the PLA, 2001. (in Chinese with English abstract) | |
[29] | 宋利萍, 黄华樑. 蛋白质剪切及其应用[J]. 生物工程学报, 2003, 19(19): 249-254. |
SONG L P, HUANG H L. Protein splicing and its application[J]. Chinese Journal of Biotechnology, 2003, 19(2): 249-254. (in Chinese with English abstract) | |
[30] |
潘传燕, 林勇, 冯鹏霏, 等. 尼罗罗非鱼Hsc70的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2019, 31(8): 1272-1279.
DOI |
PAN C Y, LIN Y, FENG P F, et al. Prokaryotic expression and polyclonal antibody preparation of Hsc70 in Nile tilapia[J]. Acta Agriculturae Zhejiangensis, 2019, 31(8): 1272-1279. (in Chinese with English abstract) | |
[31] |
OZEKI J, HASHIMOTO M, KOMATSU K, et al. The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly[J]. Molecular Plant-Microbe Interactions, 2009, 22(6): 677-685.
DOI URL |
[32] |
PENG D W, ZHENG G H, ZHENG Z Z, et al. High variability in the N terminus of coat protein among potyviruses and its advantage in producing a specific antibody[J]. European Journal of Plant Pathology, 2018, 152(2): 385-393.
DOI URL |
[1] | 朱寅初, 王宏宇, 云涛, 华炯钢, 叶伟成, 倪征, 陈柳, 张存. 浙江地区鹅星状病毒分离鉴定及其衣壳蛋白多克隆抗体的制备[J]. 浙江农业学报, 2022, 34(10): 2149-2159. |
[2] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[3] | 苏学思, 张玉宝, 王若愚, 王亚军, 唐国亮, 金卫杰. 车前草花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 104-111. |
[4] | 刘金玉, 黄鹰. 粟酒裂殖酵母SpTrz2蛋白全长和N端的原核表达与多克隆抗体制备[J]. 浙江农业学报, 2021, 33(1): 34-42. |
[5] | 黄小珍, 乔中全, 曾慧杰, 李永欣, 何钢, 王晓明. 紫薇花器官发育调控基因LiFUL1的分离与表达分析[J]. 浙江农业学报, 2020, 32(7): 1206-1214. |
[6] | 陈韫陆, 单颖, 罗浩, 徐计东, 赵灵燕, 方维焕, 李肖梁. 猪Ⅲ型干扰素原核表达及其抗病毒效果研究[J]. 浙江农业学报, 2020, 32(5): 779-788. |
[7] | 蒲路莎, 苏世博, 陈肖韩, 赵丽丽, 陈洪岩. 鹅源星状病毒ORF2基因原核表达及遗传进化分析[J]. 浙江农业学报, 2020, 32(5): 789-797. |
[8] | 王元红, 邢雪, 李传峰, 朱杰, 王勇, 刘光清. 猫传染性腹膜炎病毒AH1905株N基因的生物信息学分析及原核表达[J]. 浙江农业学报, 2020, 32(3): 406-414. |
[9] | 王小朋, 赵靓, 刘自敏, 白彩霞, 杨侃侃, 张达, 孙裴, 蒋书东, 李永东, 王勇. 猪细小病毒7型Cap基因原核表达与生物信息学分析[J]. 浙江农业学报, 2020, 32(2): 200-209. |
[10] | 李仙春, 芦艳, 毛耀芳, 杨海峰, 余海山, 马永华, 万学瑞. 鸡Prnp基因原核表达载体的构建及其在大肠埃希菌中的表达[J]. 浙江农业学报, 2020, 32(12): 2138-2146. |
[11] | 张浩杰, 刘梅, 李春燕, 何冉, 兰景超, 罗娌, 古小彬, 谢跃, 杨光友. 犬恶丝虫核苷二磷酸激酶(NDPK)基因的原核表达及其免疫荧光定位[J]. 浙江农业学报, 2019, 31(9): 1453-1460. |
[12] | 潘传燕, 林勇, 冯鹏霏, 张永德, 罗洪林. 尼罗罗非鱼Hsc70的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2019, 31(8): 1272-1279. |
[13] | 刘正奎, 吴瑗, 陈琳, 王磊, 牟泓烨, 祝徐航, 王晓杜. 猪流行性腹泻病毒Nsp5基因的原核表达及生物信息学分析[J]. 浙江农业学报, 2019, 31(4): 532-538. |
[14] | 张康, 张璇, 闫遵祥, 王磊, 张凯, 张景艳, 罗永江, 仇正英, 薛欢, 李建喜. 牛病毒性腹泻病毒Core蛋白的原核表达及多克隆抗体制备[J]. 浙江农业学报, 2019, 31(11): 1819-1824. |
[15] | 彭琪琪, 羊健, 廖乾生, 张恒木. 一个植物半胱氨酸蛋白酶多克隆抗体的制备及其应用[J]. 浙江农业学报, 2018, 30(6): 881-885. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 559
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 653
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||