浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2462-2470.DOI: 10.3969/j.issn.1004-1524.2022.11.15
鲁艳辉(), 郭嘉雯, 田俊策, 薛钊鸿, 郑许松, 吕仲贤(
)
收稿日期:
2021-03-05
出版日期:
2022-11-25
发布日期:
2022-11-29
通讯作者:
吕仲贤
作者简介:
*吕仲贤,E-mail: luzxmh@163.com基金资助:
LU Yanhui(), GUO Jiawen, TIAN Junce, XUE Zhaohong, ZHENG Xusong, LYU Zhongxian(
)
Received:
2021-03-05
Online:
2022-11-25
Published:
2022-11-29
Contact:
LYU Zhongxian
摘要:
本研究利用线粒体细胞色素氧化酶亚基Ⅰ(COⅠ)和细胞色素b(Cytb)基因的遗传学方法分析了浙江省8个不同抗性水平二化螟地理种群的遗传多样性及种群遗传结构。种群遗传多样性分析表明:PCR 扩增测序分别获得长度为627 bp的COⅠ基因片段和长度为455 bp的Cytb基因片段。355条同源COⅠ序列监测出了68个多态性位点,其中单突变位点22个,简约突变位点46个,共定义了85个单倍型,每个群体的平均单倍型为18.25个,其中瑞安(RA)种群中单倍型最多,为27个单倍型。326条Cytb同源序列监测出了45个多态性位点,其中单突变位点19个,简约突变位点26个,共定义了64个单倍型,每个群体的平均单倍型为14.375个,其中乐清(YQ)种群中单倍型最多,为25个单倍型。此外,各群体中最高的单倍型多样度h分别为0.896 3和0.934 4,反映出二化螟群体较低的遗传多样性水平。种群遗传结构分析表明:二化螟不同地理种群间遗传变异大多数来自于群体内个体间,占80.30%(COⅠ基因)和78.16%(Cytb基因)。较少部分的遗传差异来自于组间,仅占19.43%(COⅠ基因)和21.22%(Cytb基因)。单倍型网络关系图未表现出显著的地理谱系结构,Mantel相关性检测显示,遗传距离与地理距离之间无显著相关性。单倍型邻接树也没有明显分支,未呈现出地域性差异。该研究结果为浙江省不同抗性水平二化螟种群间交流和二化螟的防控提供了基础资料。
中图分类号:
鲁艳辉, 郭嘉雯, 田俊策, 薛钊鸿, 郑许松, 吕仲贤. 基于COⅠ和Cytb基因的浙江不同抗性水平二化螟种群的遗传结构分析[J]. 浙江农业学报, 2022, 34(11): 2462-2470.
LU Yanhui, GUO Jiawen, TIAN Junce, XUE Zhaohong, ZHENG Xusong, LYU Zhongxian. Population genetic structure of different resistance levels of Chilo suppressalis based on mitochondrial COⅠ and Cytb sequences in Zhejiang, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2462-2470.
种群 Popula- tions | 采集地点 Collection locations | 经纬度 Latitude and longitude | 采集时间 Collection time |
---|---|---|---|
PH | 平湖Pinghu | 30°70'N, 121°02'E | 2018年3月Mar. 2018 |
XiaoS | 萧山Xiaoshan | 30°17'N, 120°27'E | 2018年4月Apr. 2018 |
XS | 象山Xiangshan | 29°48'N, 121°87'E | 2018年4月Apr. 2018 |
NH | 宁海Ninghai | 29°28'N, 121°43'E | 2018年3月Mar. 2018 |
YK | 永康Yongkang | 28°90'N, 120°03'E | 2018年4月Apr. 2018 |
WL | 温岭Wenling | 28°37'N, 121°37'E | 2018年4月Apr. 2018 |
YQ | 乐清Yueqing | 28°13'N, 120°95'E | 2018年3月Mar. 2018 |
RA | 瑞安Rui’an | 27°78'N, 120°63'E | 2018年4月Apr. 2018 |
表1 八个不同地理种群二化螟的采集信息
Table 1 Collection information of eight different geographical populations of Chilo suppressalis
种群 Popula- tions | 采集地点 Collection locations | 经纬度 Latitude and longitude | 采集时间 Collection time |
---|---|---|---|
PH | 平湖Pinghu | 30°70'N, 121°02'E | 2018年3月Mar. 2018 |
XiaoS | 萧山Xiaoshan | 30°17'N, 120°27'E | 2018年4月Apr. 2018 |
XS | 象山Xiangshan | 29°48'N, 121°87'E | 2018年4月Apr. 2018 |
NH | 宁海Ninghai | 29°28'N, 121°43'E | 2018年3月Mar. 2018 |
YK | 永康Yongkang | 28°90'N, 120°03'E | 2018年4月Apr. 2018 |
WL | 温岭Wenling | 28°37'N, 121°37'E | 2018年4月Apr. 2018 |
YQ | 乐清Yueqing | 28°13'N, 120°95'E | 2018年3月Mar. 2018 |
RA | 瑞安Rui’an | 27°78'N, 120°63'E | 2018年4月Apr. 2018 |
基因名称 Gene name | 引物 Primer sequence(5'-3') | 产物长度 Product length/bp |
---|---|---|
COⅠ | F: TCTATGTGTGATGTTTATTG | 700 |
R: GATCAGGAATATTTGGGAAC | ||
Cytb | F: TATGTACTACCATGAGGACAAATATC | 490 |
R: ATTACACCTCCTAATTTATTAGGAAT |
表2 用于COⅠ和Cytb基因PCR扩增的引物和产物长度
Table 2 Primers and product length for PCR amplification of COⅠ and Cytb genes
基因名称 Gene name | 引物 Primer sequence(5'-3') | 产物长度 Product length/bp |
---|---|---|
COⅠ | F: TCTATGTGTGATGTTTATTG | 700 |
R: GATCAGGAATATTTGGGAAC | ||
Cytb | F: TATGTACTACCATGAGGACAAATATC | 490 |
R: ATTACACCTCCTAATTTATTAGGAAT |
药剂 Insecticides | 种群 Populations | 斜率±标准误 Slope±SE | 卡方(自由度) χ2 (df) | 致死中浓度(95%置信限) LC50 (95% FL)/(mg·L-1) | 抗性倍数 Resistance ratio |
---|---|---|---|---|---|
氯虫苯甲酰胺 | PH | 2.73±0.28 | 0.97(3) | 80.58(67.16~98.32) | 57.84 |
Chlorantraniliprole | XiaoS | 2.11±0.36 | 0.87(3) | 205.258(188.45~230.98) | 147.35 |
XS | 2.87±0.41 | 3.93(3) | 136.93 (118.09~162.22) | 98.30 | |
NH | 2.45±0.43 | 4.89(3) | 178.403(155.42~210.04) | 128.07 | |
YK | 2.21±0.23 | 2.72(3) | 196.68(171.15~215.16) | 141.19 | |
WL | 2.44±0.28 | 3.88(3) | 301.96(256.53~347.25) | 216.77 | |
YQ | 2.59±0.26 | 5.67(3) | 194.94(119.89~246.76) | 139.94 | |
RA | 1.75±0.21 | 4.07(3) | 94.47(62.64~137.58) | 67.82 | |
阿维菌素 | PH | 2.51±0.39 | 2.60 (3) | 17.84(15.37~21.98) | 19.16 |
Abamectin | XiaoS | 1.97±0.25 | 1.96(3) | 13.92(11.36~17.42) | 14.95 |
XS | 2.14±0.27 | 1.38(3) | 9.11(7.32~12.04) | 9.79 | |
NH | 2.45±0.29 | 2.87(3) | 13.53(11.70~16.39) | 14.53 | |
YK | 2.24±0.34 | 3.51(3) | 12.88(9.52~18.06) | 13.83 | |
WL | 2.49±0.24 | 2.65(3) | 8.57(6.38~10.83) | 9.21 | |
YQ | 2.61±0.36 | 1.94(3) | 15.66(12.82~18.28) | 16.82 | |
RA | 2.28±0.25 | 1.83(3) | 8.90(6.47~9.64) | 9.56 | |
甲氧虫酰肼 | PH | 2.11±0.28 | 2.32(3) | 81.77(68.41~99.04) | 112.17 |
Methoxyfenozide | XiaoS | 1.74±0.21 | 2.15(3) | 99.59(78.46~125.21) | 136.61 |
XS | 2.35±0.25 | 1.89(3) | 67.84(56.93~80.98) | 93.06 | |
NH | 2.74±0.27 | 1.54(3) | 41.88(34.18~49.97) | 57.45 | |
YK | 2.23±0.24 | 3.09(3) | 79.79(67.28~93.05) | 109.45 | |
WL | 2.43±0.21 | 2.92(3) | 36.91(29.45~42.27) | 50.47 | |
YQ | 2.67±0.28 | 3.60(3) | 73.13(58.94~91.63) | 100.32 | |
RA | 1.71±0.22 | 1.82(3) | 88.76(69.63~112.35) | 121.76 |
表3 不同地理种群二化螟对氯虫苯甲酰胺、阿维菌素和甲氧虫酰肼的抗性水平
Table 3 Resistance levels of field populations of Chilo suppressalis to chlorantraniliprole, abamectin and methoxyfenozide
药剂 Insecticides | 种群 Populations | 斜率±标准误 Slope±SE | 卡方(自由度) χ2 (df) | 致死中浓度(95%置信限) LC50 (95% FL)/(mg·L-1) | 抗性倍数 Resistance ratio |
---|---|---|---|---|---|
氯虫苯甲酰胺 | PH | 2.73±0.28 | 0.97(3) | 80.58(67.16~98.32) | 57.84 |
Chlorantraniliprole | XiaoS | 2.11±0.36 | 0.87(3) | 205.258(188.45~230.98) | 147.35 |
XS | 2.87±0.41 | 3.93(3) | 136.93 (118.09~162.22) | 98.30 | |
NH | 2.45±0.43 | 4.89(3) | 178.403(155.42~210.04) | 128.07 | |
YK | 2.21±0.23 | 2.72(3) | 196.68(171.15~215.16) | 141.19 | |
WL | 2.44±0.28 | 3.88(3) | 301.96(256.53~347.25) | 216.77 | |
YQ | 2.59±0.26 | 5.67(3) | 194.94(119.89~246.76) | 139.94 | |
RA | 1.75±0.21 | 4.07(3) | 94.47(62.64~137.58) | 67.82 | |
阿维菌素 | PH | 2.51±0.39 | 2.60 (3) | 17.84(15.37~21.98) | 19.16 |
Abamectin | XiaoS | 1.97±0.25 | 1.96(3) | 13.92(11.36~17.42) | 14.95 |
XS | 2.14±0.27 | 1.38(3) | 9.11(7.32~12.04) | 9.79 | |
NH | 2.45±0.29 | 2.87(3) | 13.53(11.70~16.39) | 14.53 | |
YK | 2.24±0.34 | 3.51(3) | 12.88(9.52~18.06) | 13.83 | |
WL | 2.49±0.24 | 2.65(3) | 8.57(6.38~10.83) | 9.21 | |
YQ | 2.61±0.36 | 1.94(3) | 15.66(12.82~18.28) | 16.82 | |
RA | 2.28±0.25 | 1.83(3) | 8.90(6.47~9.64) | 9.56 | |
甲氧虫酰肼 | PH | 2.11±0.28 | 2.32(3) | 81.77(68.41~99.04) | 112.17 |
Methoxyfenozide | XiaoS | 1.74±0.21 | 2.15(3) | 99.59(78.46~125.21) | 136.61 |
XS | 2.35±0.25 | 1.89(3) | 67.84(56.93~80.98) | 93.06 | |
NH | 2.74±0.27 | 1.54(3) | 41.88(34.18~49.97) | 57.45 | |
YK | 2.23±0.24 | 3.09(3) | 79.79(67.28~93.05) | 109.45 | |
WL | 2.43±0.21 | 2.92(3) | 36.91(29.45~42.27) | 50.47 | |
YQ | 2.67±0.28 | 3.60(3) | 73.13(58.94~91.63) | 100.32 | |
RA | 1.71±0.22 | 1.82(3) | 88.76(69.63~112.35) | 121.76 |
基因 Genes | 种群 Populations | 样本数量 N | 单倍型数 H | 多态位点数 s | 单倍型多样度 h | 平均核苷酸差异数 k | 核苷酸多样性指数 π |
---|---|---|---|---|---|---|---|
COⅠ | PH | 34 | 15 | 24 | 0.887 7 | 5.841 4 | 0.009 3 |
XiaoS | 46 | 13 | 28 | 0.861 8 | 5.963 3 | 0.009 5 | |
XS | 34 | 20 | 28 | 0.930 5 | 5.260 3 | 0.008 5 | |
NH | 49 | 9 | 15 | 0.511 1 | 1.821 4 | 0.002 9 | |
YK | 49 | 15 | 20 | 0.682 0 | 3.649 7 | 0.005 9 | |
WL | 46 | 19 | 22 | 0.858 9 | 4.637 7 | 0.007 4 | |
YQ | 49 | 26 | 26 | 0.897 1 | 4.850 3 | 0.007 7 | |
RA | 48 | 27 | 24 | 0.896 3 | 4.681 7 | 0.007 5 | |
Cytb | PH | 36 | 15 | 19 | 0.888 9 | 4.819 1 | 0.010 7 |
XiaoS | 40 | 9 | 16 | 0.669 2 | 3.152 6 | 0.006 9 | |
XS | 32 | 16 | 19 | 0.907 3 | 4.300 4 | 0.009 5 | |
NH | 49 | 6 | 12 | 0.266 2 | 1.821 4 | 0.003 4 | |
YK | 49 | 18 | 17 | 0.651 4 | 3.331 6 | 0.007 3 | |
WL | 52 | 17 | 21 | 0.865 0 | 4.070 1 | 0.009 0 | |
YQ | 48 | 25 | 25 | 0.934 4 | 4.103 7 | 0.009 0 | |
RA | 20 | 9 | 10 | 0.794 7 | 3.200 0 | 0.007 0 |
表4 基于COⅠ和Cytb标记的二化螟8个不同抗性水平地理种群的遗传学参数
Table 4 Genetic parameters of eight geographical populations with different resistance levels of Chilo suppressalis based on COⅠ and Cytb markers
基因 Genes | 种群 Populations | 样本数量 N | 单倍型数 H | 多态位点数 s | 单倍型多样度 h | 平均核苷酸差异数 k | 核苷酸多样性指数 π |
---|---|---|---|---|---|---|---|
COⅠ | PH | 34 | 15 | 24 | 0.887 7 | 5.841 4 | 0.009 3 |
XiaoS | 46 | 13 | 28 | 0.861 8 | 5.963 3 | 0.009 5 | |
XS | 34 | 20 | 28 | 0.930 5 | 5.260 3 | 0.008 5 | |
NH | 49 | 9 | 15 | 0.511 1 | 1.821 4 | 0.002 9 | |
YK | 49 | 15 | 20 | 0.682 0 | 3.649 7 | 0.005 9 | |
WL | 46 | 19 | 22 | 0.858 9 | 4.637 7 | 0.007 4 | |
YQ | 49 | 26 | 26 | 0.897 1 | 4.850 3 | 0.007 7 | |
RA | 48 | 27 | 24 | 0.896 3 | 4.681 7 | 0.007 5 | |
Cytb | PH | 36 | 15 | 19 | 0.888 9 | 4.819 1 | 0.010 7 |
XiaoS | 40 | 9 | 16 | 0.669 2 | 3.152 6 | 0.006 9 | |
XS | 32 | 16 | 19 | 0.907 3 | 4.300 4 | 0.009 5 | |
NH | 49 | 6 | 12 | 0.266 2 | 1.821 4 | 0.003 4 | |
YK | 49 | 18 | 17 | 0.651 4 | 3.331 6 | 0.007 3 | |
WL | 52 | 17 | 21 | 0.865 0 | 4.070 1 | 0.009 0 | |
YQ | 48 | 25 | 25 | 0.934 4 | 4.103 7 | 0.009 0 | |
RA | 20 | 9 | 10 | 0.794 7 | 3.200 0 | 0.007 0 |
药剂 Insecticides | 单倍型多样度 h | 核苷酸多样性指数 π | |||
---|---|---|---|---|---|
COⅠ | Cytb | COⅠ | Cytb | ||
氯虫苯甲酰胺Chlorantraniliprole | R | -0.184 | 0.098 | -0.198 | -0.136 |
P | 0.663 | 0.818 | 0.638 | 0.748 | |
阿维菌素Abamectin | R | -0.146 | 0.089 | 0.095 | 0.106 |
P | 0.730 | 0.835 | 0.823 | 0.803 | |
甲氧虫酰肼Methoxyfenozide | R | 0.431 | 0.270 | 0.604 | 0.207 |
P | 0.286 | 0.518 | 0.113 | 0.623 |
表5 二化螟不同地理种群抗性水平与种群遗传多样性的Pearson相关性分析
Table 5 Pearson correlation coefficient between resistance level and genetic diversity of different populations
药剂 Insecticides | 单倍型多样度 h | 核苷酸多样性指数 π | |||
---|---|---|---|---|---|
COⅠ | Cytb | COⅠ | Cytb | ||
氯虫苯甲酰胺Chlorantraniliprole | R | -0.184 | 0.098 | -0.198 | -0.136 |
P | 0.663 | 0.818 | 0.638 | 0.748 | |
阿维菌素Abamectin | R | -0.146 | 0.089 | 0.095 | 0.106 |
P | 0.730 | 0.835 | 0.823 | 0.803 | |
甲氧虫酰肼Methoxyfenozide | R | 0.431 | 0.270 | 0.604 | 0.207 |
P | 0.286 | 0.518 | 0.113 | 0.623 |
基因 Genes | 种群 Populations | NH | PH | RA | WL | XiaoS | XS | YK | YQ |
---|---|---|---|---|---|---|---|---|---|
COⅠ | NH | 0.009 | 0.009 | 0.008 | 0.008 | 0.008 | 0.005 | 0.009 | |
PH | 0.354 39 | 0.010 | 0.009 | 0.011 | 0.010 | 0.008 | 0.009 | ||
RA | 0.451 48 | 0.112 08 | 0.008 | 0.011 | 0.008 | 0.008 | 0.008 | ||
WL | 0.334 68 | 0.089 83 | 0.015 68 | 0.010 | 0.008 | 0.007 | 0.008 | ||
XiaoS | 0.195 27 | 0.126 09 | 0.249 14 | 0.165 40 | 0.011 | 0.008 | 0.011 | ||
XS | 0.333 75 | 0.080 46 | 0.009 94 | 0.010 91 | 0.160 04 | 0.008 | 0.008 | ||
YK | 0.201 08 | 0.104 97 | 0.182 93 | 0.076 34 | 0.074 51 | 0.085 20 | 0.008 | ||
YQ | 0.407 02 | 0.086 50 | 0.011 48 | 0.007 13 | 0.217 52 | -0.002 90 | 0.143 95 | ||
Cytb | NH | 0.009 | 0.012 | 0.01 | 0.006 | 0.011 | 0.006 | 0.011 | |
PH | 0.207 71 | 0.011 | 0.011 | 0.010 | 0.011 | 0.009 | 0.011 | ||
RA | 0.586 93 | 0.152 12 | 0.008 | 0.012 | 0.008 | 0.011 | 0.008 | ||
WL | 0.360 78 | 0.073 16 | 0.037 60 | 0.011 | 0.009 | 0.010 | 0.009 | ||
XiaoS | 0.075 21 | 0.131 28 | 0.439 96 | 0.276 78 | 0.012 | 0.008 | 0.012 | ||
XS | 0.418 74 | 0.065 35 | 0.005 43 | 0.004 03 | 0.320 59 | 0.010 | 0.009 | ||
YK | 0.062 62 | 0.042 35 | 0.309 33 | 0.153 98 | 0.065 49 | 0.181 29 | 0.010 | ||
YQ | 0.414 33 | 0.071 82 | 0.000 76 | 0.001 64 | 0.317 15 | -0.015 99 | 0.193 50 |
表6 八个二化螟不同抗性水平地理种群间遗传分化系数(对角线下)及遗传距离(对角线上)
Table 6 Genetic differentiation coefficient (below diagonal) and genetic distance (above diagonal) among eight geographical populations with different resistance levels of Chilo suppressalis
基因 Genes | 种群 Populations | NH | PH | RA | WL | XiaoS | XS | YK | YQ |
---|---|---|---|---|---|---|---|---|---|
COⅠ | NH | 0.009 | 0.009 | 0.008 | 0.008 | 0.008 | 0.005 | 0.009 | |
PH | 0.354 39 | 0.010 | 0.009 | 0.011 | 0.010 | 0.008 | 0.009 | ||
RA | 0.451 48 | 0.112 08 | 0.008 | 0.011 | 0.008 | 0.008 | 0.008 | ||
WL | 0.334 68 | 0.089 83 | 0.015 68 | 0.010 | 0.008 | 0.007 | 0.008 | ||
XiaoS | 0.195 27 | 0.126 09 | 0.249 14 | 0.165 40 | 0.011 | 0.008 | 0.011 | ||
XS | 0.333 75 | 0.080 46 | 0.009 94 | 0.010 91 | 0.160 04 | 0.008 | 0.008 | ||
YK | 0.201 08 | 0.104 97 | 0.182 93 | 0.076 34 | 0.074 51 | 0.085 20 | 0.008 | ||
YQ | 0.407 02 | 0.086 50 | 0.011 48 | 0.007 13 | 0.217 52 | -0.002 90 | 0.143 95 | ||
Cytb | NH | 0.009 | 0.012 | 0.01 | 0.006 | 0.011 | 0.006 | 0.011 | |
PH | 0.207 71 | 0.011 | 0.011 | 0.010 | 0.011 | 0.009 | 0.011 | ||
RA | 0.586 93 | 0.152 12 | 0.008 | 0.012 | 0.008 | 0.011 | 0.008 | ||
WL | 0.360 78 | 0.073 16 | 0.037 60 | 0.011 | 0.009 | 0.010 | 0.009 | ||
XiaoS | 0.075 21 | 0.131 28 | 0.439 96 | 0.276 78 | 0.012 | 0.008 | 0.012 | ||
XS | 0.418 74 | 0.065 35 | 0.005 43 | 0.004 03 | 0.320 59 | 0.010 | 0.009 | ||
YK | 0.062 62 | 0.042 35 | 0.309 33 | 0.153 98 | 0.065 49 | 0.181 29 | 0.010 | ||
YQ | 0.414 33 | 0.071 82 | 0.000 76 | 0.001 64 | 0.317 15 | -0.015 99 | 0.193 50 |
基因 Genes | 分组 Grouping | 变异来源 Variation source | 自由度 DF | 方差总和 Variance sum | 方差组分 Variance components | 变异百分比 Variation percentage/% | Fst | P |
---|---|---|---|---|---|---|---|---|
COⅠ | (NH)&(PH)&(XiaoS)& | 组间Between groups | 4 | 144.863 | 0.550 85 Va | 19.43 | 0.194 40 | 0.010 8 |
(YK)&(RA,WL,XS,YQ) | 组内群体间 | 3 | 7.828 | 0.007 58 Vb | 0.27 | 0.003 30 | 0.338 2 | |
Intra population and inter group | ||||||||
群体内个体间 | 347 | 789.757 | 2.275 96 Vc | 80.30 | 0.197 00 | 0.000 1 | ||
Between individuals within the population | ||||||||
总和Total | 354 | 942.448 | 2.834 39 | |||||
Cytb | (NH)&(PH)&(XiaoS)& | 组间Between groups | 4 | 142.151 | 0.565 62 Va | 21.22 | 0.212 20 | 0.014 06 |
(YK)&(RA,WL,XS,YQ) | 组内群体间 | 3 | 8.069 | 0.016 57 Vb | 0.62 | 0.007 90 | 0.308 22 | |
Intra population and inter group | ||||||||
群体内个体间 | 318 | 662.626 | 2.083 73 Vc | 78.16 | 0.218 38 | 0.000 01 | ||
Between individuals within the population | ||||||||
总和Total | 325 | 812.845 | 2.665 92 |
表7 基于COⅠ和Cytb基因序列的二化螟种群遗传变异的AMOVA分析
Table 7 AMOVA analysis of genetic variation of Chilo suppressalis population based on COⅠ and Cytb gene sequences
基因 Genes | 分组 Grouping | 变异来源 Variation source | 自由度 DF | 方差总和 Variance sum | 方差组分 Variance components | 变异百分比 Variation percentage/% | Fst | P |
---|---|---|---|---|---|---|---|---|
COⅠ | (NH)&(PH)&(XiaoS)& | 组间Between groups | 4 | 144.863 | 0.550 85 Va | 19.43 | 0.194 40 | 0.010 8 |
(YK)&(RA,WL,XS,YQ) | 组内群体间 | 3 | 7.828 | 0.007 58 Vb | 0.27 | 0.003 30 | 0.338 2 | |
Intra population and inter group | ||||||||
群体内个体间 | 347 | 789.757 | 2.275 96 Vc | 80.30 | 0.197 00 | 0.000 1 | ||
Between individuals within the population | ||||||||
总和Total | 354 | 942.448 | 2.834 39 | |||||
Cytb | (NH)&(PH)&(XiaoS)& | 组间Between groups | 4 | 142.151 | 0.565 62 Va | 21.22 | 0.212 20 | 0.014 06 |
(YK)&(RA,WL,XS,YQ) | 组内群体间 | 3 | 8.069 | 0.016 57 Vb | 0.62 | 0.007 90 | 0.308 22 | |
Intra population and inter group | ||||||||
群体内个体间 | 318 | 662.626 | 2.083 73 Vc | 78.16 | 0.218 38 | 0.000 01 | ||
Between individuals within the population | ||||||||
总和Total | 325 | 812.845 | 2.665 92 |
[1] | 鲁艳辉, 高广春, 郑许松, 等. 诱集植物香根草对二化螟幼虫致死的作用机制[J]. 中国农业科学, 2017, 50(3): 486-495. |
LU Y H, GAO G C, ZHENG X S, et al. The lethal mechanism of trap plant Vetiveria zizanioides against the larvae of Chilo suppressalis[J]. Scientia Agricultura Sinica, 2017, 50(3): 486-495. (in Chinese with English abstract) | |
[2] |
宋瑞雪, 鲁涵, 鲁艳辉, 等. 取食香根草后水稻螟虫对杀虫剂敏感度变化[J]. 中国水稻科学, 2019, 33(3): 282-286.
DOI |
SONG R X, LU H, LU Y H, et al. Sensitivity changes of rice stem borers to insecticides after feeding on Vetiveria zianioides[J]. Chinese Journal of Rice Science, 2019, 33(3): 282-286. (in Chinese with English abstract) | |
[3] | 王玲, 李琪, 孔令锋, 等. 基于COⅠ基因的中国沿海青蚶野生群体遗传结构及种群动态研究[J]. 海洋与湖沼, 2018, 49(49): 87-95. |
WANG L, LI Q, KONG L F, et al. Population genetic structure and demographic history of Barbatia virescens along Chinese coast based on mitochondrial coi sequences[J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 87-95. (in Chinese with English abstract) | |
[4] |
WHITMORE D H, THAI T H, CRAFT C M. The largemouth bass cytochrome b gene[J]. Journal of Fish Biology, 1994, 44(4): 637-645.
DOI URL |
[5] |
YIN J, WANG A M, HONG G Y, et al. Complete mitochondrial genome of Chilo suppressalis(Walker) (Lepidoptera: Crambidae)[J]. Mitochondrial DNA, 2011, 22(3): 41-43.
DOI URL |
[6] | 李晴, 梁玉勇, 厉建蕾, 等. 基于COⅠ基因的二化螟种群遗传多样性检测方法[J]. 应用昆虫学报, 2014, 51(51): 1237-1245. |
LI Q, LIANG Y Y, LI J L, et al. Genetic diversity of Chilo suppressalis(Walker) as determined by partial COⅠgene sequencing and DGGE[J]. Chinese Journal of Applied Entomology, 2014, 51(5): 1237-1245. (in Chinese with English abstract) | |
[7] | 熊潇. 柑橘木虱线粒体基因组分析及基于其COⅠ的种群遗传结构研究[D]. 南昌: 南昌大学, 2017. |
XIONG X. Studies on complete mitochondrial genome and population genetic structure based on COⅠ gene in Diaphorina citri(Hemiptera: Psylloidea)[D]. Nanchang: Nanchang University, 2017. (in Chinese with English abstract) | |
[8] | 董梦书. 基于线粒体基因序列的缅甸安小叶蝉遗传多样性研究[D]. 贵阳: 贵州大学, 2017. |
DONG M S. Study on genetic diversity of Anaka burmensis based on mitochondrial gene sequences[D]. Guiyang: Guizhou University, 2017. (in Chinese with English abstract) | |
[9] | 刘雪微. 亚洲玉米螟Bt抗性种群的遗传多样性研究[D]. 北京: 中国农业科学院, 2018. |
LIU X W. Genetic diversity in bt-resistance strains of Ostrinia furnacalis(Guenée)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[10] | 胡兴华. 橡实象虫之物种分化及遗传多样性与植物的关系[D]. 上海: 华东师范大学, 2013. |
HU X H. Host related species diversification and population genetic diversity of acorn weevils[D]. Shanghai: East China Normal University, 2013. (in Chinese with English abstract) | |
[11] | 汤小天. 水稻大螟种群遗传结构研究[D]. 扬州: 扬州大学, 2016. |
TANG X T. Population genetic structure of Sesamia inferens(Lepidoptera: Noctuoidae)[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract) | |
[12] | 周俐宏. 我国切花害虫甜菜夜蛾遗传多样性及遗传结构研究[D]. 沈阳: 沈阳农业大学, 2016. |
ZHOU L H. Genetic diversity and genetic structure of Spodoptera exigua damaged on cut flowers in China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract) | |
[13] |
LU Y H, WANG G R, ZHONG L Q, et al. Resistance monitoring of Chilo suppressalis(Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China[J]. Crop Protection, 2017, 100: 196-202.
DOI URL |
[14] | 鲁艳辉, 赵燕燕, 张发成, 等. 二化螟滞育生物钟蛋白TIME-EA4基因的克隆及时空和温度诱导表达分析[J]. 昆虫学报, 2016, 59(59): 392-401. |
LU Y H, ZHAO Y Y, ZHANG F C, et al. Cloning and spatiotemporal and temperature-induced expression profiling of diapause bioclock protein TIME-EA4 gene in the rice stem borer, Chilo suppressalis(Lepidoptera: Pyralidae)[J]. Acta Entomologica Sinica, 2016, 59(4): 392-401. (in Chinese with English abstract) | |
[15] | 唐启义. DPS数据处理系统第三卷专业统计及其他[M]. 北京: 科学出版社, 2021. |
[16] | [ SWINDELL S R, PLASTERER T N. Seqman[M]// Sequence data analysis guidebook. Totowa, NJ: Humana Press, 1997: 75-89. |
[17] |
LIBRADO P, ROZAS J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
DOI PMID |
[18] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
DOI PMID |
[19] |
RICE W R. Analyzing tables of statistical tests[J]. Evolution, 1989, 43(1): 223-225.
DOI PMID |
[20] |
CAMERON S L, WHITING M F. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths[J]. Gene, 2008, 408(1/2): 112-123.
DOI URL |
[21] | 王兴亚, 周俐宏. 基于mtDNA Cytb基因序列的我国北方地区甜菜夜蛾遗传多样性与种群历史分析[J]. 生态学报, 2016, 36(36): 2337-2347. |
WANG X Y, ZHOU L H. Genetic diversity and population history among geographic populations of Spodoptera exigua in North China based on mtDNA Cytb gene sequences[J]. Acta Ecologica Sinica, 2016, 36(8): 2337-2347. (in Chinese with English abstract) | |
[22] |
ANDERSON S J, CONRAD K F, GILLMAN M P, et al. Phenotypic changes and reduced genetic diversity have accompanied the rapid decline of the garden tiger moth (Arctia caja) in the U.K[J]. Ecological Entomology, 2008, 33(5): 638-645.
DOI URL |
[23] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
[1] | 郭丹丹, 刘峰, 牛宝龙, 楼宝. 基于线粒体Cytb基因和D-loop区的野生与养殖小黄鱼群体遗传多样性[J]. 浙江农业学报, 2022, 34(9): 1856-1865. |
[2] | 杨春, 孟泽洪, 李帅, 梁思慧, 乔大河, 陈正武. 十二个茶树品种对茶棍蓟马、茶小绿叶蝉抗性表现及抗性成分初步鉴定[J]. 浙江农业学报, 2022, 34(8): 1713-1724. |
[3] | 陆景伟, 陈国康, 周娜, 魏捷, 胡燕, 郑阳, 陶伟林. 六个丝瓜品种对南方根结线虫的抗性[J]. 浙江农业学报, 2022, 34(5): 959-965. |
[4] | 刘苡含, 牟青山, 陈珊宇, 阮关海, 胡晋, 关亚静. 基于SSR-HRM技术的向日葵DNA指纹图谱构建[J]. 浙江农业学报, 2022, 34(4): 678-686. |
[5] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[6] | 曹联飞, 施金虎, 徐雅岚, 苏晓玲, 胡福良, 郑火青. 基于线粒体DNA tRNAleu-COⅡ序列的浙江省东方蜜蜂遗传多样性研究[J]. 浙江农业学报, 2022, 34(11): 2395-2403. |
[7] | 汪宝根, 董君暘, 汪颖, 李素娟, 王尖, 鲁忠富, 吴晓花, 李国景, 吴新义. 浙江省地方菜豆种质资源鉴定与遗传多样性分析[J]. 浙江农业学报, 2022, 34(11): 2416-2427. |
[8] | 王郅琪, 孙建, 梁俊超, 赵云燕, 颜廷献, 颜小文, 危文亮, 乐美旺. 基于分子标记的江西省芝麻地方种质遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1565-1580. |
[9] | 马杰, 屈雯, 陈春艳, 王磊, 马俊, 刘针杉, 马维, 周平, 何远宽, 孙勃. 基于转录组序列的叶用芥菜奶奶青菜EST-SSR标记开发与遗传多样性分析[J]. 浙江农业学报, 2021, 33(9): 1640-1649. |
[10] | 刘士力, 卞玉玲, 贾永义, 迟美丽, 李飞, 郑建波, 程顺, 顾志敏. 基于线粒体CO Ⅰ 基因序列的红螯螯虾养殖群体遗传结构分析[J]. 浙江农业学报, 2021, 33(8): 1385-1392. |
[11] | 黄宣, 金林灿, 叶朝辉, 姜洁锋, 施贤波. 浙江近年育成粳稻新品种(系)部分抗病虫基因的分子检测与育种应用[J]. 浙江农业学报, 2021, 33(7): 1159-1169. |
[12] | 张静珍, 王连军, 雷剑, 柴沙沙, 杨新笋, 张文英. 基于cpSSR标记的山药种质资源DNA指纹图谱构建及遗传多样性分析[J]. 浙江农业学报, 2021, 33(7): 1222-1233. |
[13] | 安红卫, 宋勤飞, 牛素贞. 贵州茶树种质资源遗传多样性、群体结构和遗传分化研究[J]. 浙江农业学报, 2021, 33(7): 1234-1243. |
[14] | 杨梅, 胡小兰, 申涛, 谭康, 刘代铃, 邱红波. 玉米第8染色体单片段代换系的构建与灰斑病抗性材料筛选[J]. 浙江农业学报, 2021, 33(3): 383-389. |
[15] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||