浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 589-599.DOI: 10.3969/j.issn.1004-1524.20221790
侯栋1(), 李亚莉1, 岳宏忠1, 张东琴1, 姚拓2, 黄书超3, 杨海兴4
收稿日期:
2022-12-13
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
侯栋(1969—),男,甘肃镇原人,学士,研究员,主要从事黄瓜、南瓜育种与蔬菜栽培技术研究。E-mail:houdong215@163.com
基金资助:
HOU Dong1(), LI Yali1, YUE Hongzhong1, ZHANG Dongqin1, YAO Tuo2, HUANG Shuchao3, YANG Haixing4
Received:
2022-12-13
Online:
2024-03-25
Published:
2024-04-09
摘要:
于2018—2020年在甘肃省兰州市榆中县开展连续3 a的定点试验,监测微生物菌肥替代部分化肥对花椰菜产量、品质及土壤环境的影响。试验共设3个处理:A,全量化肥(当地常用化肥施用量,100%化肥);B,菌肥(60 kg·hm-2)+当地常用化肥施用量的60%;C,菌肥(120 kg·hm-2)+当地常用化肥施用量的40%。结果表明:在2018年和2020年,B处理的产量分别达到了32.41、33.61 t·hm-2,较同年的A处理分别显著(P<0.05)高出7.7%和2.1%;但在2019年,A处理的产量显著高于其他处理。与A处理相比,B、C处理在2019年的VC含量分别显著提高了72.2%和94.3%;B处理的花椰菜花球在2020年的硝酸盐含量显著降低了7.0%。经过3 a试验,与A处理相比,B、C处理的土壤蔗糖酶活性和有效磷含量显著升高;C处理的土壤速效钾含量显著下降,而全磷含量显著升高。较全量化肥而言,施用微生物菌肥不仅增加了有益微生物,如浮霉菌门(Planctomycetota)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和被孢霉属(Mortierella)等的相对丰度,而且降低了病原菌,如油壶菌属(Olpidium)和小壶菌属(Spizellomyces)的相对丰度,降幅分别为2.98%~42.97%、80.69%~85.31%。综上所述,用适量的微生物菌肥替代部分化肥有助于提高土壤质量,平衡微生物区系,改善高原种植区花椰菜的品质,在本试验条件下,以B处理的效果最佳。
中图分类号:
侯栋, 李亚莉, 岳宏忠, 张东琴, 姚拓, 黄书超, 杨海兴. 微生物菌肥替代部分化肥对花椰菜产量、品质及土壤微生物的影响[J]. 浙江农业学报, 2024, 36(3): 589-599.
HOU Dong, LI Yali, YUE Hongzhong, ZHANG Dongqin, YAO Tuo, HUANG Shuchao, YANG Haixing. Effects of microbial fertilizer instead of partial chemical fertilizer on yield, quality and soil microorganisms of cauliflower[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 589-599.
年份 Year | 处理 Treatment | 维生素C含量 Vitamin C content/(mg·kg-1) | 粗纤维含量 Crude fiber content/% | 可溶性蛋白含量 Soluble protein content/(mg·kg-1) | 可溶性糖含量 Soluble sugar content/(mg·kg-1) | 硝酸盐含量 Nitrate content/ (mg·kg-1) | 产量 Yield/ (t·hm-2) |
---|---|---|---|---|---|---|---|
2018 | A | 501.6±24.7 a | 2.68±0.01 a | 38.2±1.1 a | 25.4±3.4 a | 332.03±29.95 a | 30.09±0.05 b |
B | 466.6±13.4 a | 1.38±0.01 a | 39.4±2.1 a | 26.2±4.0 a | 321.22±87.87 a | 32.41±0.13 a | |
C | 532.9±45.3 a | 1.94±0.01 a | 35.8±1.3 a | 22.4±5.6 a | 236.63±12.34 a | 27.57±0.10 c | |
2019 | A | 388.0±57.7 b | 1.05±0.01 a | 20.5±0.8 a | 22.6±0.8 a | 488.68±5.11 b | 48.67±0.02 a |
B | 668.0±36.8 a | 1.00±0.01 ab | 18.8±0.2 a | 22.3±0.4 a | 520.08±4.72 a | 45.11±0.01 b | |
C | 754.0±42.1 a | 0.97±0.01 b | 14.4±1.2 b | 19.4±1.5 a | 461.21±3.98 c | 39.61±0.02 c | |
2020 | A | 833.0±3.4 a | 1.06±0.01 b | 36.2±5.0 a | 16.9±1.7 a | 336.33±4.03 a | 32.91±0.02 b |
B | 832.4±7.9 a | 1.46±0.01 a | 41.0±5.7 a | 17.4±0.7 a | 312.95±1.49 b | 33.61±0.03 a | |
C | 797.7±1.7 b | 1.27±0.01 ab | 34.6±4.0 a | 17.8±0.7 a | 337.31±1.11 a | 28.43±0.03 c |
表1 不同处理对花椰菜品质和产量的影响
Table 1 Effect of treatments on quality and yield of cauliflower
年份 Year | 处理 Treatment | 维生素C含量 Vitamin C content/(mg·kg-1) | 粗纤维含量 Crude fiber content/% | 可溶性蛋白含量 Soluble protein content/(mg·kg-1) | 可溶性糖含量 Soluble sugar content/(mg·kg-1) | 硝酸盐含量 Nitrate content/ (mg·kg-1) | 产量 Yield/ (t·hm-2) |
---|---|---|---|---|---|---|---|
2018 | A | 501.6±24.7 a | 2.68±0.01 a | 38.2±1.1 a | 25.4±3.4 a | 332.03±29.95 a | 30.09±0.05 b |
B | 466.6±13.4 a | 1.38±0.01 a | 39.4±2.1 a | 26.2±4.0 a | 321.22±87.87 a | 32.41±0.13 a | |
C | 532.9±45.3 a | 1.94±0.01 a | 35.8±1.3 a | 22.4±5.6 a | 236.63±12.34 a | 27.57±0.10 c | |
2019 | A | 388.0±57.7 b | 1.05±0.01 a | 20.5±0.8 a | 22.6±0.8 a | 488.68±5.11 b | 48.67±0.02 a |
B | 668.0±36.8 a | 1.00±0.01 ab | 18.8±0.2 a | 22.3±0.4 a | 520.08±4.72 a | 45.11±0.01 b | |
C | 754.0±42.1 a | 0.97±0.01 b | 14.4±1.2 b | 19.4±1.5 a | 461.21±3.98 c | 39.61±0.02 c | |
2020 | A | 833.0±3.4 a | 1.06±0.01 b | 36.2±5.0 a | 16.9±1.7 a | 336.33±4.03 a | 32.91±0.02 b |
B | 832.4±7.9 a | 1.46±0.01 a | 41.0±5.7 a | 17.4±0.7 a | 312.95±1.49 b | 33.61±0.03 a | |
C | 797.7±1.7 b | 1.27±0.01 ab | 34.6±4.0 a | 17.8±0.7 a | 337.31±1.11 a | 28.43±0.03 c |
处理 Treatment | 脲酶活性 Urease activity/ (mg·d-1·g-1) | 过氧化氢酶 Catalase activity/ (mL·h-1·g-1) | 碱性磷酸酶活性 Alkaline phosphatase activity/ (mg·d-1·g-1) | 蔗糖酶活性 Sucrase activity/ (mg·d-1·g-1) |
---|---|---|---|---|
A | 1.62±0.02 a | 1.73±0.01 a | 1.49±0.01 a | 1.06±0.02 b |
B | 1.59±0.03 a | 1.75±0.01 a | 1.37±0.08 a | 1.18±0.04 a |
C | 1.61±0.01 a | 1.74±0.01 a | 1.37±0.06 a | 1.18±0.03 a |
表2 不同处理对土壤酶活性的影响
Table 2 Effect of treatments on soil enzymes activities
处理 Treatment | 脲酶活性 Urease activity/ (mg·d-1·g-1) | 过氧化氢酶 Catalase activity/ (mL·h-1·g-1) | 碱性磷酸酶活性 Alkaline phosphatase activity/ (mg·d-1·g-1) | 蔗糖酶活性 Sucrase activity/ (mg·d-1·g-1) |
---|---|---|---|---|
A | 1.62±0.02 a | 1.73±0.01 a | 1.49±0.01 a | 1.06±0.02 b |
B | 1.59±0.03 a | 1.75±0.01 a | 1.37±0.08 a | 1.18±0.04 a |
C | 1.61±0.01 a | 1.74±0.01 a | 1.37±0.06 a | 1.18±0.03 a |
处理 Treatment | pH值 pH value | TS/% | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | TN/ (g·kg-1) | TP/ (g·kg-1) | TK/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
A | 8.40± 0.02 a | 0.04± 0.01 a | 19.40± 0.85 a | 130.33± 0.33 a | 24.26± 0.33 b | 167.72± 1.15 a | 0.81± 0.01 a | 0.96± 0.02 b | 23.02± 0.12 a |
B | 8.44± 0.10 a | 0.04± 0.01 a | 19.16± 0.23 a | 126.67± 4.67 a | 27.62± 0.65 a | 166.06± 1.2 ab | 0.84± 0.04 a | 0.95± 0.01 b | 22.71± 0.12 a |
C | 8.38± 0.02 a | 0.04± 0.01 a | 17.73± 0.54 a | 126.67± 6.96 a | 26.54± 0.19 a | 163.06± 1.2 b | 0.79± 0.01 a | 1.22± 0.02 a | 21.95± 1.15 a |
表3 不同处理对土壤基本理化性质的影响
Table 3 Effect of treatments on soil physiochemical properties
处理 Treatment | pH值 pH value | TS/% | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | TN/ (g·kg-1) | TP/ (g·kg-1) | TK/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
A | 8.40± 0.02 a | 0.04± 0.01 a | 19.40± 0.85 a | 130.33± 0.33 a | 24.26± 0.33 b | 167.72± 1.15 a | 0.81± 0.01 a | 0.96± 0.02 b | 23.02± 0.12 a |
B | 8.44± 0.10 a | 0.04± 0.01 a | 19.16± 0.23 a | 126.67± 4.67 a | 27.62± 0.65 a | 166.06± 1.2 ab | 0.84± 0.04 a | 0.95± 0.01 b | 22.71± 0.12 a |
C | 8.38± 0.02 a | 0.04± 0.01 a | 17.73± 0.54 a | 126.67± 6.96 a | 26.54± 0.19 a | 163.06± 1.2 b | 0.79± 0.01 a | 1.22± 0.02 a | 21.95± 1.15 a |
处理 Treatment | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|
A | 3 442.4±53.3 a | 10.82±0.03 a | 0.998 8±0.000 1 a |
B | 3 190.6±150.0 a | 10.76±0.05 a | 0.998 9±0.000 1 a |
C | 3 310.3±50.5 a | 10.83±0.04 a | 0.999 0±0.000 1 a |
表4 不同处理对土壤细菌α多样性的影响
Table 4 Effect of treatments on α-diversity of soil bacteria
处理 Treatment | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|
A | 3 442.4±53.3 a | 10.82±0.03 a | 0.998 8±0.000 1 a |
B | 3 190.6±150.0 a | 10.76±0.05 a | 0.998 9±0.000 1 a |
C | 3 310.3±50.5 a | 10.83±0.04 a | 0.999 0±0.000 1 a |
处理 Treatment | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|
A | 592.0±38.8 a | 5.725±0.543 a | 0.901 6±0.048 9 a |
B | 580.7±35.4 a | 6.076±0.308 a | 0.952 9±0.010 9 a |
C | 539.5±68.5 a | 5.854±1.055 a | 0.907 2±0.071 9 a |
表5 不同处理对土壤真菌α多样性的影响
Table 5 Effect of treatments on α-diversity of soil fungi
处理 Treatment | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|
A | 592.0±38.8 a | 5.725±0.543 a | 0.901 6±0.048 9 a |
B | 580.7±35.4 a | 6.076±0.308 a | 0.952 9±0.010 9 a |
C | 539.5±68.5 a | 5.854±1.055 a | 0.907 2±0.071 9 a |
指标 Index | 产量 Yield | 维生素C含量 Vitamin C content | 粗纤维含量 Crude fiber content | 可溶性蛋白含量 Soluble protein content | 可溶性糖含量 Soluble sugar content | 硝酸盐含量 Nitrate content |
---|---|---|---|---|---|---|
pH | 1.000* | 0.746 | 0.976 | 0.996 | -0.266 | -0.956 |
全盐量Total salt content | 0.953 | 0.92 | 0.994 | 0.914 | -0.561 | -0.811 |
有机质Organic matter content | 0.676 | 0.993 | 0.809 | 0.591 | -0.899 | -0.413 |
碱解氮含量Alkali-hydrolyzed nitrogen content | -0.171 | 0.513 | 0.029 | -0.277 | -0.896 | 0.469 |
有效磷含量Available phosphorus content | 0.473 | -0.216 | 0.287 | 0.566 | 0.711 | -0.723 |
速效钾含量Available potassium content | 0.494 | 0.941 | 0.657 | 0.396 | -0.974 | -0.199 |
全氮含量Total nitrogen content | 0.998* | 0.794 | 0.99 | 0.986 | -0.338 | -0.931 |
全磷含量Total phosphorus content | -0.788 | -0.999* | -0.895 | -0.717 | 0.814 | 0.558 |
全钾含量Total potassium content | 0.556 | 0.964 | 0.711 | 0.462 | -0.955 | -0.27 |
脲酶活性Urease activity | -0.774 | -0.174 | -0.633 | -0.839 | -0.387 | 0.933 |
过氧化氢酶活性Catalase activity | 0.694 | 0.057 | 0.537 | 0.769 | 0.493 | -0.884 |
碱性磷酸酶活性Alkaline phosphatase activity | -0.171 | 0.513 | 0.029 | -0.277 | -0.896 | 0.469 |
蔗糖酶活性Sucrase activity | 0.171 | -0.513 | -0.029 | 0.277 | 0.896 | -0.469 |
油壶菌属相对丰度 | -0.916 | -0.432 | -0.817 | -0.954 | -0.126 | 0.995 |
Relative abundance of Olpidium | ||||||
小壶菌属相对丰度 | -0.217 | 0.472 | -0.018 | -0.322 | -0.875 | 0.510 |
Relative abundance of Spizellomyces | ||||||
被孢霉属相对丰度 | 0.350 | -0.345 | 0.157 | 0.450 | 0.799 | -0.624 |
Relative abundance of Mortierella | ||||||
子囊菌门相对丰度 | -0.217 | -0.801 | -0.408 | -0.110 | 0.998* | -0.097 |
Relative abundance of Ascomycota | ||||||
酸杆菌门相对丰度 | 0.968 | 0.898 | 0.999* | 0.935 | -0.516 | -0.842 |
Relative abundance of Acidobacteriota | ||||||
变形菌门相对丰度 | 0.008 | 0.658 | 0.207 | -0.101 | -0.961 | 0.304 |
Relative abundance of Proteobacteria | ||||||
放线菌门相对丰度 | -0.791 | -0.999* | -0.897 | -0.720 | 0.811 | 0.562 |
Relative abundance of Actinobacteria | ||||||
芽单胞菌门相对丰度 | -0.226 | 0.464 | -0.027 | -0.331 | -0.87 | 0.517 |
Relative abundance of Gemmatimonadetes | ||||||
浮霉菌门相对丰度 | 0.099 | -0.574 | -0.102 | 0.207 | 0.926 | -0.403 |
Relative abundance of Planctomycetota | ||||||
厚壁菌门相对丰度 | -0.672 | -0.992 | -0.806 | -0.587 | 0.901 | 0.408 |
Relative abundance of Firmicutes | ||||||
硝化螺菌属相对丰度 | 0.112 | 0.733 | 0.308 | 0.003 | -0.985 | 0.202 |
Relative abundance of Nitrospira |
表6 花椰菜产量、品质指标与土壤因子的相关性
Table 6 Correlation within cauliflower yield and quality indexes and soil factors
指标 Index | 产量 Yield | 维生素C含量 Vitamin C content | 粗纤维含量 Crude fiber content | 可溶性蛋白含量 Soluble protein content | 可溶性糖含量 Soluble sugar content | 硝酸盐含量 Nitrate content |
---|---|---|---|---|---|---|
pH | 1.000* | 0.746 | 0.976 | 0.996 | -0.266 | -0.956 |
全盐量Total salt content | 0.953 | 0.92 | 0.994 | 0.914 | -0.561 | -0.811 |
有机质Organic matter content | 0.676 | 0.993 | 0.809 | 0.591 | -0.899 | -0.413 |
碱解氮含量Alkali-hydrolyzed nitrogen content | -0.171 | 0.513 | 0.029 | -0.277 | -0.896 | 0.469 |
有效磷含量Available phosphorus content | 0.473 | -0.216 | 0.287 | 0.566 | 0.711 | -0.723 |
速效钾含量Available potassium content | 0.494 | 0.941 | 0.657 | 0.396 | -0.974 | -0.199 |
全氮含量Total nitrogen content | 0.998* | 0.794 | 0.99 | 0.986 | -0.338 | -0.931 |
全磷含量Total phosphorus content | -0.788 | -0.999* | -0.895 | -0.717 | 0.814 | 0.558 |
全钾含量Total potassium content | 0.556 | 0.964 | 0.711 | 0.462 | -0.955 | -0.27 |
脲酶活性Urease activity | -0.774 | -0.174 | -0.633 | -0.839 | -0.387 | 0.933 |
过氧化氢酶活性Catalase activity | 0.694 | 0.057 | 0.537 | 0.769 | 0.493 | -0.884 |
碱性磷酸酶活性Alkaline phosphatase activity | -0.171 | 0.513 | 0.029 | -0.277 | -0.896 | 0.469 |
蔗糖酶活性Sucrase activity | 0.171 | -0.513 | -0.029 | 0.277 | 0.896 | -0.469 |
油壶菌属相对丰度 | -0.916 | -0.432 | -0.817 | -0.954 | -0.126 | 0.995 |
Relative abundance of Olpidium | ||||||
小壶菌属相对丰度 | -0.217 | 0.472 | -0.018 | -0.322 | -0.875 | 0.510 |
Relative abundance of Spizellomyces | ||||||
被孢霉属相对丰度 | 0.350 | -0.345 | 0.157 | 0.450 | 0.799 | -0.624 |
Relative abundance of Mortierella | ||||||
子囊菌门相对丰度 | -0.217 | -0.801 | -0.408 | -0.110 | 0.998* | -0.097 |
Relative abundance of Ascomycota | ||||||
酸杆菌门相对丰度 | 0.968 | 0.898 | 0.999* | 0.935 | -0.516 | -0.842 |
Relative abundance of Acidobacteriota | ||||||
变形菌门相对丰度 | 0.008 | 0.658 | 0.207 | -0.101 | -0.961 | 0.304 |
Relative abundance of Proteobacteria | ||||||
放线菌门相对丰度 | -0.791 | -0.999* | -0.897 | -0.720 | 0.811 | 0.562 |
Relative abundance of Actinobacteria | ||||||
芽单胞菌门相对丰度 | -0.226 | 0.464 | -0.027 | -0.331 | -0.87 | 0.517 |
Relative abundance of Gemmatimonadetes | ||||||
浮霉菌门相对丰度 | 0.099 | -0.574 | -0.102 | 0.207 | 0.926 | -0.403 |
Relative abundance of Planctomycetota | ||||||
厚壁菌门相对丰度 | -0.672 | -0.992 | -0.806 | -0.587 | 0.901 | 0.408 |
Relative abundance of Firmicutes | ||||||
硝化螺菌属相对丰度 | 0.112 | 0.733 | 0.308 | 0.003 | -0.985 | 0.202 |
Relative abundance of Nitrospira |
[1] | 李斯更, 王娟娟. 我国蔬菜产业发展现状及对策措施[J]. 中国蔬菜, 2018(6): 1-4. |
LI S G, WANG J J. Development status and countermeasures of vegetable industry in China[J]. China Vegetables, 2018(6): 1-4. (in Chinese) | |
[2] | 李霖. 蔬菜产业组织模式选择及其对农户收入和效率的影响研究[D]. 杭州: 浙江大学, 2018. |
LI L. The study on the choice of vegetable industrial organization model and the influence on farmers’ income and efficiency[D]. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract) | |
[3] | 张怀志, 唐继伟, 袁硕, 等. 津冀设施蔬菜施肥调查分析[J]. 中国土壤与肥料, 2018(2): 54-60. |
ZHANG H Z, TANG J W, YUAN S, et al. Investigation and analysis of greenhouse vegetable fertilization in Tianjin and Hebei Province[J]. Soil and Fertilizer Sciences in China, 2018(2): 54-60. (in Chinese with English abstract) | |
[4] | 龙伟文, 王平, 冯新梅, 等. PGPR与AMF相互关系的研究进展[J]. 应用生态学报, 2000, 11(2): 311-314. |
LONG W W, WANG P, FENG X M, et al. Research progress on PGPR/AMF interactions[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 311-314. (in Chinese with English abstract) | |
[5] | 刘云峰, 杨宁, 温丹, 等. 微生物菌肥在园艺作物上的应用研究[J]. 安徽农业科学, 2022, 50(7): 11-15. |
LIU Y F, YANG N, WEN D, et al. Research progress on application of microbial fertilizer to horticultural crops[J]. Journal of Anhui Agricultural Sciences, 2022, 50(7): 11-15. (in Chinese with English abstract) | |
[6] | 邢起铭, 金文杰, 周利斌, 等. 植物根际促生菌提高植物耐盐性的研究进展[J]. 中国农学通报, 2022, 38(11): 46-52. |
XING Q M, JIN W J, ZHOU L B, et al. Salt tolerance of plant increased by plant growth promoting rhizobacteria: research progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 46-52. (in Chinese with English abstract) | |
[7] | 于健, 郁继华, 冯致, 等. 微生物肥与化肥配施对基质栽培番茄产量、品质、光合特性及基质微生物的影响[J]. 甘肃农业大学学报, 2017, 52(2): 41-47. |
YU J, YU J H, FENG Z, et al. Effects of microbial fertilizer combined with chemical fertilizer on yield, quality, photosynthetic characteristics and microorganisms of tomato under substrate culture in greenhouse[J]. Journal of Gansu Agricultural University, 2017, 52(2): 41-47. (in Chinese with English abstract) | |
[8] | 岳宏忠, 张东琴, 侯栋, 等. 微生物菌肥部分替代化肥对设施黄瓜产量和土壤细菌群落结构的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 118-126. |
YUE H Z, ZHANG D Q, HOU D, et al. Effects of partial substitution of chemical fertilizer by microbial fertilizer on yield of cucumber and soil bacterial community structure in greenhouse[J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(7): 118-126. (in Chinese with English abstract) | |
[9] | 蒋永梅, 姚拓, 田永亮, 等. 微生物肥料对青梗花椰菜生长和土壤微生物特性的影响[J]. 草业科学, 2017, 34(3): 465-471. |
JIANG Y M, YAO T, TIAN Y L, et al. Effects of microbial fertilizer on broccoli growth and soil microbial characteristics[J]. Pratacultural Science, 2017, 34(3): 465-471. (in Chinese with English abstract) | |
[10] | 李杰, 贾豪语, 颉建明, 等. 生物肥部分替代化肥对花椰菜产量、品质、光合特性及肥料利用率的影响[J]. 草业学报, 2015, 24(1): 47-55. |
LI J, JIA H Y, XIE J M, et al. Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield, quality, photosynthesis and fertilizer utilization rate in broccoli[J]. Acta Prataculturae Sinica, 2015, 24(1): 47-55. (in Chinese with English abstract) | |
[11] | 李凤霞, 赵营. 氮肥减量配施微生物菌剂对灌淤土花椰菜产量及土壤微生物的影响[J]. 水土保持研究, 2017, 24(2): 94-100. |
LI F X, ZHAO Y. Effect of nitrogen fertilizer reduction with microbial inoculants on broccoli production and the influence of the soil microbial characteristics[J]. Research of Soil and Water Conservation, 2017, 24(2): 94-100. (in Chinese with English abstract) | |
[12] | 王君正, 张琪, 高子星, 等. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087. |
WANG J Z, ZHANG Q, GAO Z X, et al. Effects of two microbial agents on yield, quality and rhizosphere environment of autumn cucumber cultured in organic substrate[J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087. (in Chinese with English abstract) | |
[13] | 崔月贞, 吴玉红, 郝兴顺, 等. 不同有机氮替代部分无机氮对水稻产量及土壤微生物的影响[J]. 西北农业学报, 2019, 28(10): 1689-1697. |
CUI Y Z, WU Y H, HAO X S, et al. Effects of partial replacement of chemical fertilizer by organic manure on rice yield and soil microorganisms in Hanzhong Basin[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1689-1697. (in Chinese with English abstract) | |
[14] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[15] | 中华人民共和国农业部. 土壤检测第7部分:土壤有效磷的测定: NY/T 1121.7—2014[S]. 北京: 中国农业出版社, 2015. |
[16] | 中华人民共和国农业部. 土壤检测第24部分:土壤全氮的测定自动定氮仪法: NY/T 1121.24—2012[S]. 北京: 中国标准出版社, 2012. |
[17] | 梁鹏飞, 郭全恩, 曹诗瑜, 等. 盐渍化土壤改良剂对草坪根际土壤细菌群落多样性的影响[J]. 土壤, 2023, 55(1):140-146. |
LIANG P F, GUO Q E, CAO S Y, et al. Effects of salinized soil amendments on bacterial community diversity in turf rhizosphere soil[J]. Soil, 2023, 55(1):140-146. (in Chinese with English abstract) | |
[18] | LOGUE J B, STEDMON C A, KELLERMAN A M, et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter[J]. The ISME Journal, 2016, 10(3): 533-545. |
[19] | LYU J, JIN L, JIN N, et al. Effects of different vegetable rotations on fungal community structure in continuous tomato cropping matrix in greenhouse[J]. Frontiers in Microbiology, 2020, 11: 829. |
[20] | 杜伟利, 丁晓蕾. 花椰菜在中国的传播及其影响[J]. 青岛农业大学学报(社会科学版), 2019, 31(1): 75-78. |
DU W L, DING X L. The spread of cauliflower in China and its impact[J]. Journal of Qingdao Agricultural University (Social Science), 2019, 31(1): 75-78. (in Chinese with English abstract) | |
[21] | 徐玉红. 花椰菜的营养价值及保健作用[J]. 食品界, 2018(4): 94-95. |
XU Y H. Nutritional value and health care function of cauliflower[J]. Food Industry, 2018(4): 94-95. (in Chinese) | |
[22] | 吴可. 减量施肥对水稻生长、产量及养分利用的影响[D]. 南宁: 广西大学, 2021. |
WU K. Effects of reduced fertilization on rice growth, yield and nutrient utilization[D]. Nanning: Guangxi University, 2021. (in Chinese with English abstract) | |
[23] | 郭鹏飞. 化肥减量及替代方式对宁夏设施番茄产量和品质的影响[D]. 银川: 宁夏大学, 2020. |
GUO P F. Effects of chemical fertilizer reduction and alternative methods on yield and quality of greenhouse tomatoes in Ningxia[D]. Yinchuan: Ningxia University, 2020. (in Chinese with English abstract) | |
[24] | 杜少平, 马忠明, 薛亮. 不同有机肥对砂田西瓜产量、品质和养分吸收的影响[J]. 应用生态学报, 2019, 30(4): 1269-1277. |
DU S P, MA Z M, XUE L. Effects of different kinds of organic fertilizer on fruit yield, quality and nutrient uptake of watermelon in gravel-mulched field[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1269-1277. (in Chinese with English abstract) | |
[25] | 武杞蔓, 田诗涵, 李昀烨, 等. 微生物菌肥对设施黄瓜生长、产量及品质的影响[J]. 生物技术通报, 2022, 38(1): 125-131. |
WU Q M, TIAN S H, LI Y Y, et al. Effects of microbial fertilizer on Cucumis sativus L. growth, yield and quality[J]. Biotechnology Bulletin, 2022, 38(1): 125-131. (in Chinese with English abstract) | |
[26] | 赵玲玉, 索升州, 赵祺, 等. 梭梭根际促生菌(PGPR)菌肥对番茄产量、品质和土壤特性的影响[J]. 甘肃农业大学学报, 2022, 57(3): 42-51. |
ZHAO L Y, SUO S Z, ZHAO Q, et al. Effects of biofertilizers with PGPR strains from rhizosphere of Haloxylon ammodendron on fruit yield, quality and soil characteristics of tomato[J]. Journal of Gansu Agricultural University, 2022, 57(3): 42-51. (in Chinese with English abstract) | |
[27] | 黄文, 郭竞, 刘慧超, 等. 不同微生物菌剂对番茄产量及品质的影响[J]. 中国瓜菜, 2022, 35(8): 75-78. |
HUANG W, GUO J, LIU H C, et al. Different microbial agents affect tomato yield and quality[J]. China Cucurbits and Vegetables, 2022, 35(8): 75-78. (in Chinese with English abstract) | |
[28] | 张树衡, 丁德东, 何静, 等. 两种生物肥料配施对再植花椒生长及光合特性的影响[J]. 西北农业学报, 2021, 30(9): 1355-1364. |
ZHANG S H, DING D D, HE J, et al. Effect of two biofertilizer mixtures on growth and photosynthetic characteristics of replanted Zanthoxylum bungeanum[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(9): 1355-1364. (in Chinese with English abstract) | |
[29] | 胡基华, 李萌, 曹旭, 等. 微生物菌肥对寒地大豆根围土壤细菌群落和产量的影响[J]. 微生物学杂志, 2022, 42(4): 12-20. |
HU J H, LI M, CAO X, et al. Effects of microbial fertilizer on bacterial community and yield of soybean rhizosphere soil in cold region[J]. Journal of Microbiology, 2022, 42(4): 12-20. (in Chinese with English abstract) | |
[30] | 黄书超, 侯栋, 岳宏忠, 等. 三株促生菌及其混合微生物菌剂对莴笋生长和品质的影响[J]. 浙江农业学报, 2021, 33(7): 1212-1221. |
HUANG S C, HOU D, YUE H Z, et al. Effects of three growth promoting bacteria and their mixed microbial agents on growth and quality of lettuce[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1212-1221. (in Chinese with English abstract) | |
[31] | 肖颖, 吉使阿微, 赵文学, 等. 青藏高原东缘不同人工草地土壤养分、酶活性及微生物生物量特征[J]. 中国草地学报, 2022, 44(9): 90-99. |
XIAO Y, JISHI A W, ZHAO W X, et al. Soil nutrients, enzyme activities and microbial biomass characteristics of different artificial grasslands in the eastern margin of the Qinghai-Tibetan plateau[J]. Chinese Journal of Grassland, 2022, 44(9): 90-99. (in Chinese with English abstract) | |
[32] | 李传哲, 章欢, 姚文静, 等. 生物炭配施氮肥对典型黄河故道区土壤理化性质和冬小麦产量的影响[J]. 应用生态学报, 2020, 31(10): 3424-3432. |
LI C Z, ZHANG H, YAO W J, et al. Effects of biochar application combined with nitrogen fertilizer on soil physicochemical properties and winter wheat yield in the typical ancient region of Yellow River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3424-3432. (in Chinese with English abstract) | |
[33] | 张绪美, 曹亚茹, 沈文忠, 等. 微生物肥对设施土壤次生盐渍化和番茄生产的影响[J]. 中国土壤与肥料, 2019(5): 119-126. |
ZHANG X M, CAO Y R, SHEN W Z, et al. Effects of microbial fertilizer on soil secondary salinization and tomato production in protected cultivation[J]. Soil and Fertilizer Sciences in China, 2019(5): 119-126. (in Chinese with English abstract) | |
[34] | 徐忠山, 杨彦明, 陈晓晶, 等. 菌肥对混播牧草土壤酶活性及微生物的影响[J]. 中国土壤与肥料, 2018(6): 77-83. |
XU Z S, YANG Y M, CHEN X J, et al. The effects of microbial fertilizer and mixed-sowing on soil enzyme activities and microbial biomass[J]. Soil and Fertilizer Sciences in China, 2018(6): 77-83. (in Chinese with English abstract) | |
[35] | 钱海燕, 杨滨娟, 黄国勤, 等. 秸秆还田配施化肥及微生物菌剂对水田土壤酶活性和微生物数量的影响[J]. 生态环境学报, 2012, 21(3): 440-445. |
QIAN H Y, YANG B J, HUANG G Q, et al. Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields[J]. Ecology and Environmental Sciences, 2012, 21(3): 440-445. (in Chinese with English abstract) | |
[36] | 刘森林. 两种菌剂与有机肥施用对草莓连作土壤微生物群落及其功能的影响[D]. 南京: 南京农业大学, 2019. |
LIU S L. Effects of two microbial agents and organic fertilizer on soil microbial community and its functions in continuous cropping strawberry garden[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese with English abstract) | |
[37] | LI X G, DING C F, ZHANG T L, et al. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry, 2014, 72: 11-18. |
[38] | 周倩怡, 李屹, 韩睿, 等. 根际促生菌缓解园艺作物连作障碍的研究进展[J]. 生态学杂志, 2022, 41(9): 1845-1852. |
ZHOU Q Y, LI Y, HAN R, et al. Research progress of using plant growth promoting rhizobacteria to alleviate continuous cropping obstacles of horticultural crops[J]. Chinese Journal of Ecology, 2022, 41(9): 1845-1852. (in Chinese with English abstract) |
[1] | 蔡诗怡, 虞慧芳, 王建升, 祝彪, 沈钰森, 顾宏辉, 盛小光. 花椰菜“坐球高度”性状的主基因+多基因遗传分析[J]. 浙江农业学报, 2024, 36(3): 527-533. |
[2] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[3] | 盛小光, 沈钰森, 虞慧芳, 王建升, 赵振卿, 顾宏辉. 花椰菜花球发育相关基因BoCAL的KASP标记开发和应用[J]. 浙江农业学报, 2022, 34(6): 1183-1192. |
[4] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[5] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[6] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[7] | 黄雷, 李光庆, 姚雪琴, 刘春晴, 谢祝捷, 耿春女. 基因型和环境对不同生育期花椰菜霜霉病的影响[J]. 浙江农业学报, 2020, 32(8): 1420-1426. |
[8] | 牛博, 李丽娜, 庞广昌, 鲁丁强. 植物根尖分生组织传感器的构建及其对尿素传感动力学研究[J]. 浙江农业学报, 2020, 32(8): 1466-1474. |
[9] | 林辉, 张锦, 原倩宇, 叶静, 孙万春, 虞轶俊, 俞巧钢, 马军伟. 棘孢木霉和超微粉腐殖质改善连作土壤微生态[J]. 浙江农业学报, 2020, 32(6): 1060-1069. |
[10] | 刘涛, 张翅鹏, 郝瑶玲, 邱丽娟, 黄臣臣. 硫酸盐对土壤铁矿物还原转化及砷释放的影响[J]. 浙江农业学报, 2020, 32(4): 678-684. |
[11] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
[12] | 李美霖, 陈宇眺, 洪晓富, 乔宇颖, 王青霞, 陈喜靖, 沈阿林, 喻曼. 不同氮肥管理方式对稻田土壤微生物群落结构的影响[J]. 浙江农业学报, 2020, 32(2): 308-316. |
[13] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[14] | 王燕云, 赵龙杰, 郝春莉, 蔡尽忠. 生物有机肥对不同连作年限设施黄瓜土壤微生物数量和酶活性的影响[J]. 浙江农业学报, 2019, 31(4): 631-638. |
[15] | 张博伟, 王海静, 宋茂勇, 谢慧君, 张建. 四溴双酚A对土壤无机氮转化的影响及其微生物学机理初探[J]. 浙江农业学报, 2019, 31(4): 639-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||