浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 600-612.DOI: 10.3969/j.issn.1004-1524.20230477
董爱琴1,2(), 陈院华1,2, 杨涛1,2, 徐昌旭1,2, 程丽群1, 谢杰1,2,*(
)
收稿日期:
2023-04-12
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
董爱琴(1983—),女,河南开封人,硕士,高级实验师,主要从事受污染耕地安全利用研究。E-mail:aiqin.dong@outlook.com
通讯作者:
*谢杰,E-mail:基金资助:
DONG Aiqin1,2(), CHEN Yuanhua1,2, YANG Tao1,2, XU Changxu1,2, CHENG Liqun1, XIE Jie1,2,*(
)
Received:
2023-04-12
Online:
2024-03-25
Published:
2024-04-09
摘要:
通过盆栽试验研究了单纯紫云英翻压(GM),以及紫云英与石灰共施(GM0HL)、紫云英+常量石灰晚施(GM5HL)、紫云英+减量石灰晚施(GM5LL)等处理对土壤性状、水稻根表铁膜及水稻对镉吸收转运的影响。结果表明,相较于对照(CK),翻压紫云英可显著(P<0.05)提高土壤有机质含量2.1~2.7 g·kg-1。相较于GM处理,增施石灰后,土壤pH值显著提高0.38~0.78个pH单位,且土壤有效态Cd含量显著降低21.71%~41.28%。在紫云英快速腐解末期,增施了石灰的处理(GM0HL、GM5HL、GM5LL),土壤Eh显著高于GM处理。与CK相比,GM0HL、GM5HL、GM5LL处理在分蘖期的水稻根表铁膜Fe含量分别显著下降43.34%、38.82%和29.00%,根表铁膜Cd含量分别显著下降43.72%、35.56%和12.72%。主成分分析的结果显示,土壤pH值和有机质含量是影响水稻Cd吸收的关键因子,提高土壤pH值和有机质含量可以降低土壤Cd有效性,增加水稻根表铁膜厚度和根表铁膜Cd含量,从而抑制水稻对Cd的吸收。在试验条件下,紫云英翻压5 d后减量施用石灰,既可以达到较好的降Cd效果,又能在一定程度上减少Cd污染耕地的治理投入。
中图分类号:
董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612.
DONG Aiqin, CHEN Yuanhua, YANG Tao, XU Changxu, CHENG Liqun, XIE Jie. Effect of application of lime with Chinese milk vetch on the cadmium uptake in rice[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 600-612.
处理 Teatment | pH | OM/(g·kg-1) | A-Cd/(mg·kg-1) |
---|---|---|---|
CK | 5.63±0.08 c | 21.7±1.3 b | 0.256±0.03 ab |
GM | 5.67±0.17 c | 23.9±1.3 a | 0.281±0.03 a |
GM0HL | 6.38±0.33 a | 24.4±1.0 a | 0.165±0.02 c |
GM5HL | 6.41±0.17 a | 24.2±0.9 a | 0.170±0.02 c |
GM5LL | 6.01±0.04 b | 23.8±1.2 a | 0.220±0.01 b |
表1 不同处理的土壤pH值及有机质、有效态Cd含量
Table 1 Soil pH and contents of organic matter and available Cd
处理 Teatment | pH | OM/(g·kg-1) | A-Cd/(mg·kg-1) |
---|---|---|---|
CK | 5.63±0.08 c | 21.7±1.3 b | 0.256±0.03 ab |
GM | 5.67±0.17 c | 23.9±1.3 a | 0.281±0.03 a |
GM0HL | 6.38±0.33 a | 24.4±1.0 a | 0.165±0.02 c |
GM5HL | 6.41±0.17 a | 24.2±0.9 a | 0.170±0.02 c |
GM5LL | 6.01±0.04 b | 23.8±1.2 a | 0.220±0.01 b |
图2 不同生育期各处理水稻根系的根表铁膜铁、镉含量 DCB-Fe,根表铁膜铁含量;DCB-Cd,根表铁膜镉含量。同一生育期柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.2 Content of Fe and Cd in root iron plaque under treatments at different growth stages DCB-Fe, Fe content in root iron plaque; DCB-Cd, Cd content in root iron plaque. Bars marked without the same letters indicate significant difference within treatments at the same growth stage at P<0.05.
图3 分蘖期(A)和成熟期(B)各处理水稻不同部位的Cd含量 同一部位柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.3 Cd contents in different parts of rice at tillering stage(A) and mature stage (B) under treatments Bars marked without the same letters indicate significant difference within treatments for the same part at P<0.05.
处理 Treatment | TF1 | TF2 |
---|---|---|
CK | 21.54±2.16 cd | 0.77±0.12 b |
GM | 18.93±0.79 d | 0.98±0.11 a |
GM0HL | 34.20±0.59 a | 0.74±0.05 b |
GM5HL | 28.87±0.56 b | 0.64±0.03 b |
GM5LL | 23.73±3.08 c | 0.76±0.03 b |
表2 分蘖期各处理的水稻Cd转运系数
Table 2 Cd translocation factor of rice at tillering stage under treatments
处理 Treatment | TF1 | TF2 |
---|---|---|
CK | 21.54±2.16 cd | 0.77±0.12 b |
GM | 18.93±0.79 d | 0.98±0.11 a |
GM0HL | 34.20±0.59 a | 0.74±0.05 b |
GM5HL | 28.87±0.56 b | 0.64±0.03 b |
GM5LL | 23.73±3.08 c | 0.76±0.03 b |
处理 Treatment | TF1 | TF2 | TF3 |
---|---|---|---|
CK | 86.33±5.70 b | 0.32±0.03 a | 0.17±0.01 a |
GM | 89.63±13.22 b | 0.22±0.03 c | 0.16±0.01 a |
GM0HL | 116.18±5.20 a | 0.26±0.03 bc | 0.11±0.02 b |
GM5HL | 93.44±5.47 b | 0.28±0.01 b | 0.09±0.01 c |
GM5LL | 88.24±10.07 b | 0.24±0.02 bc | 0.10±0.01 bc |
表3 成熟期各处理的水稻Cd转运系数
Table 3 Cd translocation factor of rice at mature stage under treatments
处理 Treatment | TF1 | TF2 | TF3 |
---|---|---|---|
CK | 86.33±5.70 b | 0.32±0.03 a | 0.17±0.01 a |
GM | 89.63±13.22 b | 0.22±0.03 c | 0.16±0.01 a |
GM0HL | 116.18±5.20 a | 0.26±0.03 bc | 0.11±0.02 b |
GM5HL | 93.44±5.47 b | 0.28±0.01 b | 0.09±0.01 c |
GM5LL | 88.24±10.07 b | 0.24±0.02 bc | 0.10±0.01 bc |
生育期 Growth stage | 变量 Variable | DCB-Cd | R-Cd | S-Cd | B-Cd |
---|---|---|---|---|---|
分蘖期Tillering stage | DCB-Fe | 0.912** | 0.430 | 0.811** | — |
DCB-Cd | 0.515* | 0.792** | — | ||
R-Cd | 0.329 | — | |||
S-Cd | — | ||||
成熟期Mature stage | DCB-Fe | 0.465 | 0.299 | 0.650** | 0.711** |
DCB-Cd | 0.829** | 0.361 | 0.367 | ||
R-Cd | 0.097 | 0.210 | |||
S-Cd | 0.543* |
表4 不同生育期根表铁膜与水稻不同部位Cd含量的相关性
Table 4 Correlation within root iron plaque and Cd content in different parts of rice at different growth stages
生育期 Growth stage | 变量 Variable | DCB-Cd | R-Cd | S-Cd | B-Cd |
---|---|---|---|---|---|
分蘖期Tillering stage | DCB-Fe | 0.912** | 0.430 | 0.811** | — |
DCB-Cd | 0.515* | 0.792** | — | ||
R-Cd | 0.329 | — | |||
S-Cd | — | ||||
成熟期Mature stage | DCB-Fe | 0.465 | 0.299 | 0.650** | 0.711** |
DCB-Cd | 0.829** | 0.361 | 0.367 | ||
R-Cd | 0.097 | 0.210 | |||
S-Cd | 0.543* |
变量 | Eh | pH | OM | A-Cd | TDCB-Fe | MDCB-Fe | TDCB-Cd |
---|---|---|---|---|---|---|---|
Variable | |||||||
pH | -0.524* | ||||||
OM | -0.694** | 0.350 | |||||
A-Cd | 0.376 | -0.932** | -0.245 | ||||
TDCB-Fe | 0.538* | -0.867** | -0.450 | 0.883** | |||
MDCB-Fe | 0.457 | -0.733** | -0.517* | 0.673** | 0.799** | ||
TDCB-Cd | 0.432 | -0.859** | -0.434 | 0.856** | 0.912** | 0.918** | |
MDCB-Cd | -0.189 | -0.498 | -0.008 | 0.597* | 0.586* | 0.465 | 0.642** |
表5 土壤性状与根表铁膜Fe及根表铁膜Cd含量的相关性
Table 5 Correlation within soil properties and root iron plaque and Cd content in iron plaque
变量 | Eh | pH | OM | A-Cd | TDCB-Fe | MDCB-Fe | TDCB-Cd |
---|---|---|---|---|---|---|---|
Variable | |||||||
pH | -0.524* | ||||||
OM | -0.694** | 0.350 | |||||
A-Cd | 0.376 | -0.932** | -0.245 | ||||
TDCB-Fe | 0.538* | -0.867** | -0.450 | 0.883** | |||
MDCB-Fe | 0.457 | -0.733** | -0.517* | 0.673** | 0.799** | ||
TDCB-Cd | 0.432 | -0.859** | -0.434 | 0.856** | 0.912** | 0.918** | |
MDCB-Cd | -0.189 | -0.498 | -0.008 | 0.597* | 0.586* | 0.465 | 0.642** |
图4 主成分载荷矩阵图 PCA1,第一主成分;PCA2,第二主成分;Eh,土壤氧化还原电位;A-Cd,土壤有效态Cd含量;OM,土壤有机质含量;TDCB-Fe,分蘖期水稻根表铁膜Fe含量;MDCB-Fe,成熟期水稻根表铁膜Fe含量;TDCB-Cd,分蘖期水稻根表铁膜Cd含量;MDCB-Cd,成熟期水稻根表铁膜Cd含量。
Fig.4 Principal component loading matrix PCA1, The 1st principle component; PCA2, The 2nd principle component; Eh, Soil oxidation-reduction potential; A-Cd, Soil available Cd content; OM, Soil organic matter content; TDCB-Fe, Fe content in root iron plaque at the tillering stage; MDCB-Fe, Fe content in root iron plaque at the mature stage; TDCB-Cd, Cd content in root iron plaque at the tillering stage; MDCB-Cd, Cd content in root iron plaque at the mature stage.
[1] | 黄道友, 朱奇宏, 朱捍华, 等. 重金属污染耕地农业安全利用研究进展与展望[J]. 农业现代化研究, 2018, 39(6): 1030-1043. |
HUANG D Y, ZHU Q H, ZHU H H, et al. Advances and prospects of safety agro-utilization of heavy metal contaminated farmland soil[J]. Research of Agricultural Modernization, 2018, 39(6): 1030-1043. (in Chinese with English abstract) | |
[2] | HUSSAIN B, ASHRAF M N, ABBAS A, et al. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies[J]. Science of the Total Environment, 2021, 754: 142188. |
[3] | ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. |
[4] | 周亮, 肖峰, 肖欢, 等. 施用石灰降低污染稻田上双季稻镉积累的效果[J]. 中国农业科学, 2021, 54(4): 780-791. |
ZHOU L, XIAO F, XIAO H, et al. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees[J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791. (in Chinese with English abstract) | |
[5] | 张庆沛, 李冰, 王昌全, 等. 秸秆还田配施无机改良剂对稻田土壤镉赋存形态及生物有效性的影响[J]. 农业环境科学学报, 2016, 35(12): 2345-2352. |
ZHANG Q P, LI B, WANG C Q, et al. Effects of combined application of straw and inorganic amendments on cadmium speciation and bioavailability in paddy soil[J]. Journal of Agro-Environment Science, 2016, 35(12): 2345-2352. (in Chinese with English abstract) | |
[6] | 张振兴, 纪雄辉, 谢运河, 等. 水稻不同生育期施用生石灰对稻米镉含量的影响[J]. 农业环境科学学报, 2016, 35(10): 1867-1872. |
ZHANG Z X, JI X H, XIE Y H, et al. Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain[J]. Journal of Agro-Environment Science, 2016, 35(10): 1867-1872. (in Chinese with English abstract) | |
[7] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[8] | 薛毅, 尹泽润, 盛浩, 等. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887. |
XUE Y, YIN Z R, SHENG H, et al. Reduction of soil cadmium activity and rice cadmium content by 4-year-consecutive application of organic fertilizer[J]. Environmental Science, 2020, 41(4): 1880-1887. (in Chinese with English abstract) | |
[9] | WANG W, LAI D Y F, WANG C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research, 2015, 152: 8-16. |
[10] | XIE J, DONG A Q, LIU J, et al. Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium[J]. Environmental Science and Pollution Research, 2019, 26(16): 16409-16421. |
[11] | 贾乐, 朱俊艳, 苏德纯. 秸秆还田对镉污染农田土壤中镉生物有效性的影响[J]. 农业环境科学学报, 2010, 29(10): 1992-1998. |
JIA L, ZHU J Y, SU D C. Effects of crop straw return on soil cadmium availability in different cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2010, 29(10): 1992-1998. (in Chinese with English abstract) | |
[12] | 胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013, 32(3): 432-437. |
HU Y, HUANG Y Z, HUANG Y C, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice(Oryza sativa L.) at different growth stages[J]. Journal of Agro-Environment Science, 2013, 32(3): 432-437. (in Chinese with English abstract) | |
[13] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-201. |
[14] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤质量有效态铅和镉的测定原子吸收法: GB/T 23739—2009[S]. 北京: 中国标准出版社, 2009. |
[15] | 王飞, 王建国, 刘登望, 等. 不同花生品种对稻田镉富集及转运的研究[J]. 中国油料作物学报, 2019, 41(4): 568-576. |
WANG F, WANG J G, LIU D W, et al. Cadmium concentration and translocation in paddy fields with different peanut varieties[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 568-576. (in Chinese with English abstract) | |
[16] | 杨国航, 李琼, 和利钊, 等. 晚稻全生育期Cd的迁移转化规律及预测模型研究[J]. 中国农学通报, 2021, 37(25): 1-10. |
YANG G H, LI Q, HE L Z, et al. Study on the migration, transformation and prediction model of cadmium in the whole growth stage of late rice[J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 1-10. (in Chinese with English abstract) | |
[17] | DU J N, YAN C L, LI Z D. Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation[J]. Marine Pollution Bulletin, 2013, 74(1): 105-109. |
[18] | LIU J G, CAO C X, WONG M, et al. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake[J]. Journal of Environmental Sciences, 2010, 22(7): 1067-1072. |
[19] | 刘敏超, 李花粉, 夏立江, 等. 根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J]. 生态学报, 2001, 21(4): 598-602. |
LIU M C, LI H F, XIA L J, et al. Effect of Fe, Mn coating formed on roots on Cd uptake by rice varieties[J]. Acta Ecologica Sinica, 2001, 21(4): 598-602. (in Chinese with English abstract) | |
[20] | 张玉盛, 肖欢, 敖和军. 外部条件对水稻镉吸收的影响研究进展[J]. 作物研究, 2019, 33(4): 331-337. |
ZHANG Y S, XIAO H, AO H J. Advances in studies on the effects of external conditions on cadmium uptake in rice[J]. Crop Research, 2019, 33(4): 331-337. (in Chinese with English abstract) | |
[21] | 刘文菊, 张西科, 张福锁. 根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J]. 土壤学报, 1999, 36(4): 463-469. |
LIU W J, ZHANG X K, ZHANG F S. Effects of iron oxides and root exudates on cadmium uptake by rice[J]. Acta Pedologica Sinica, 1999, 36(4): 463-469. (in Chinese with English abstract) | |
[22] | 赵宇浩, 杨玉红, 赵浩东, 等. 基于主成分分析的沈阳地区水稻土镉污染修复剂修复效果评估[J]. 土壤通报, 2021, 52(5): 1220-1226. |
ZHAO Y H, YANG Y H, ZHAO H D, et al. Evaluating remediation effects of remediation agents on cadmium-contaminated paddy soil in Shenyang based on principal component analysis method[J]. Chinese Journal of Soil Science, 2021, 52(5): 1220-1226. (in Chinese with English abstract) | |
[23] | 范美蓉, 张春霞, 廖育林, 等. 不同品种紫云英对镉污染土壤水稻生长累积效应的研究[J]. 中国农学通报, 2020, 36(20): 72-76. |
FAN M R, ZHANG C X, LIAO Y L, et al. Chinese milk vetch varieties: accumulation effect on the rice growth in cadmium contaminated soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 72-76. (in Chinese with English abstract) | |
[24] | 谢杰, 董爱琴, 徐昌旭, 等. 紫云英长期还田对稻田土壤Cd含量与形态的影响[J]. 浙江农业学报, 2019, 31(12): 2084-2094. |
XIE J, DONG A Q, XU C X, et al. Impact of long-term returning of Astragalus sinicus L. on content and forms of Cd in different depths of paddy soils[J]. Acta Agriculturae Zhejiangensis, 2019, 31(12): 2084-2094. (in Chinese with English abstract) | |
[25] | 林新坚, 兰忠明, 张辉, 等. 不同紫云英基因型根系分泌物中有机酸成分分析[J]. 草业学报, 2014, 23(4): 146-152. |
LIN X J, LAN Z M, ZHANG H, et al. Organic acid composition analysis of root exudation of Chinese milk vetch genotypes[J]. Acta Prataculturae Sinica, 2014, 23(4): 146-152. (in Chinese with English abstract) | |
[26] | 高金涛, 王晓玥, 周兴, 等. 调理剂配合紫云英还田降低水稻土镉的生物有效性[J]. 植物营养与肥料学报, 2022, 28(10): 1828-1839. |
GAO J T, WANG X Y, ZHOU X, et al. Soil conditioners with Chinese milk vetch reduce Cd bioavailability in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1828-1839. (in Chinese with English abstract) | |
[27] | 王阳, 刘恩玲, 王奇赞, 等. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189-193. |
WANG Y, LIU E L, WANG Q Z, et al. Effects of milk vetch on cadmium and lead accumulation in rice[J]. Journal of Soil and Water Conservation, 2013, 27(2): 189-193. (in Chinese with English abstract) | |
[28] | 张成兰, 刘春增, 吕玉虎, 等. 减量化肥配施不同量紫云英对土壤磷素形态及水稻产量的影响[J]. 中国土壤与肥料, 2020(1): 100-106. |
ZHANG C L, LIU C Z, LÜ Y H, et al. Effects of the combination of reduced chemical fertilizer and various amounts of Chinese milk vetch (Astragalus sinicus L.) on soil phosphorus forms and rice yield[J]. Soil and Fertilizer Sciences in China, 2020(1): 100-106. (in Chinese with English abstract) | |
[29] | 刘春增, 常单娜, 李本银, 等. 种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响[J]. 土壤学报, 2017, 54(3): 657-669. |
LIU C Z, CHANG D N, LI B Y, et al. Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil[J]. Acta Pedologica Sinica, 2017, 54(3): 657-669. (in Chinese with English abstract) | |
[30] | 刘国顺, 罗贞宝, 王岩, 等. 绿肥翻压对烟田土壤理化性状及土壤微生物量的影响[J]. 水土保持学报, 2006, 20(1): 95-98. |
LIU G S, LUO Z B, WANG Y, et al. Effect of green manure application on soil properties and soil microbial biomass in tobacco field[J]. Journal of Soil and Water Conservation, 2006, 20(1): 95-98. (in Chinese with English abstract) | |
[31] | 窦韦强, 安毅, 秦莉, 等. 土壤pH对镉形态影响的研究进展[J]. 土壤, 2020, 52(3): 439-444. |
DOU W Q, AN Y, QIN L, et al. Advances in effects of soil pH on cadmium form[J]. Soils, 2020, 52(3): 439-444. (in Chinese with English abstract) | |
[32] | CROWDER A A, COLTMAN D W. Formation of manganese oxide plaque on rice roots in solution culture under varying pH and manganese (Mn2+) concentration conditions[J]. Journal of Plant Nutrition, 1993, 16(4): 589-599. |
[33] | 傅友强, 于智卫, 蔡昆争, 等. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报, 2010, 16(6): 1527-1534. |
FU Y Q, YU Z W, CAI K Z, et al. Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects: a review[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1527-1534. (in Chinese with English abstract) | |
[34] | 刘文菊, 朱永官. 湿地植物根表的铁锰氧化物膜[J]. 生态学报, 2005, 25(2): 358-363. |
LIU W J, ZHU Y G. Iron and Mn plaques on the surface of roots of wetland plants[J]. Acta Ecologica Sinica, 2005, 25(2): 358-363. (in Chinese with English abstract) | |
[35] | 刘侯俊, 张俊伶, 韩晓日, 等. 根表铁膜对元素吸收的效应及其影响因素[J]. 土壤, 2009, 41(3): 335-343. |
LIU H J, ZHANG J L, HAN X R, et al. Influences of iron plaque on element uptake by plants and its affecting factors[J]. Soils, 2009, 41(3): 335-343. (in Chinese with English abstract) | |
[36] | 李忠义, 张静静, 蒙炎成, 等. 绿肥还田腐解特征及培肥地力研究进展[J]. 江苏农业科学, 2017, 45(22): 14-18. |
LI Z Y, ZHANG J J, MENG Y C, et al. Research progress on decomposition characteristics and fertility improvement of green manure returning to field[J]. Jiangsu Agricultural Sciences, 2017, 45(22): 14-18. (in Chinese) | |
[37] | 李学垣, 韩德乾. 绿肥压青后水稻生育期间土壤中还原性物质的动态变化[J]. 土壤学报, 1966, 3(1): 59-64. |
LI X Y, HAN D Q. The dynamical equilibrium of soil reductive substances after green-manuring for rice culture[J]. Acta Pedologica Sinica, 1966, 3(1): 59-64. (in Chinese with English abstract) | |
[38] | TIAN G, BADEJO M A, OKOH A I, et al. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa[J]. Biogeochemistry, 2007, 86(2): 217-229. |
[39] | 常单娜, 刘春增, 李本银, 等. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响[J]. 草业学报, 2018, 27(12): 133-144. |
CHANG D N, LIU C Z, LI B Y, et al. Effects of incorporating Chinese milk vetch on reductive material characteristics and greenhouse gas emissions in paddy soil[J]. Acta Prataculturae Sinica, 2018, 27(12): 133-144. (in Chinese with English abstract) | |
[40] | 邓小华, 罗伟, 周米良, 等. 绿肥在湘西烟田中的腐解和养分释放动态[J]. 烟草科技, 2015, 48(6): 13-18. |
DENG X H, LUO W, ZHOU M L, et al. Dynamics of decomposition and nutrient release of green manures in tobacco fields in Xiangxi[J]. Tobacco Science & Technology, 2015, 48(6): 13-18. (in Chinese with English abstract) | |
[41] | 肖德顺, 徐冉, 王丹英, 等. 根表铁膜对水稻磷素吸收影响研究进展[J]. 中国稻米, 2022, 28(4): 1-5. |
XIAO D S, XU R, WANG D Y, et al. Research progress on effect of root surface iron plaque on rice phosphorus absorption[J]. China Rice, 2022, 28(4): 1-5. (in Chinese with English abstract) | |
[42] | 吕本春, 付利波, 湛方栋, 等. 绿肥作物矿化分解对土壤镉有效性的影响研究进展[J]. 农业资源与环境学报, 2021, 38(3): 431-441. |
LÜ B C, FU L B, ZHAN F D, et al. Research advance on the effect of mineralization and decomposition of green manure crops on soil cadmium availability[J]. Journal of Agricultural Resources and Environment, 2021, 38(3): 431-441. (in Chinese with English abstract) | |
[43] | ZHENG S N, ZHANG M K. Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011, 23(3): 434-443. |
[44] | SIX J. Plant nutrition for sustainable development and global health[J]. Plant and Soil, 2011, 339(1): 1-2. |
[45] | JANOŠ P, VÁVROVÁ J, HERZOGOVÁ L, et al. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study[J]. Geoderma, 2010, 159(3/4): 335-341. |
[46] | 吴烈善, 曾东梅, 莫小荣, 等. 不同钝化剂对重金属污染土壤稳定化效应的研究[J]. 环境科学, 2015, 36(1): 309-313. |
WU L S, ZENG D M, MO X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil[J]. Environmental Science, 2015, 36(1): 309-313. (in Chinese with English abstract) |
[1] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
[2] | 郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480. |
[3] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[4] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[5] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[6] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[7] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[8] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[9] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[10] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[11] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[12] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[13] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
[14] | 张红梅, 王保君, 沈亚强, 程旺大. 浙北地区不同粒形优质粳稻产量和品质对播期调控的响应[J]. 浙江农业学报, 2023, 35(12): 2751-2762. |
[15] | 徐悦, 汪少敏, 谭晓菁, 罗英杰, 常婧一, 邓会, 刘秀丽, 崔维军, 周洁, 吴月燕, 严成其, 王栩鸣. D3基因在抗病防卫反应中的转录调控研究[J]. 浙江农业学报, 2023, 35(12): 2763-2774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||