[1] |
曲瑞莲, 吴春霞, 冯献忠. mRNA选择性剪切在植物发育中的作用[J]. 植物生理学报, 2014, 50(6): 717-724.
|
|
QU R L, WU C X, FENG X Z. Function of mRNA alternative splicing in plant development[J]. Plant Physiology Journal, 2014, 50(6): 717-724. (in Chinese with English abstract)
|
[2] |
丁宇, 王马寅, 唐敏强, 等. 高温胁迫下2个棉花品种转录组可变剪切差异分析[J]. 江苏农业科学, 2023, 51(5): 1-11.
|
|
DING Y, WANG M Y, TANG M Q, et al. Study on transcriptome alternative splicing difference of two cotton varieties under high temperature stress[J]. Jiangsu Agricultural Sciences, 2023, 51(5): 1-11. (in Chinese with English abstract)
|
[3] |
TSUJI H, TAMAKI S, KOMIYA R, et al. Florigen and the photoperiodic control of flowering in rice[J]. Rice, 2008, 1(1): 25-35.
|
[4] |
刘春怡, 杨茜, 张艺晓, 等. 小麦抽穗期的遗传调控研究进展[J]. 麦类作物学报, 2023, 43(8): 992-997.
|
|
LIU C Y, YANG X, ZHANG Y X, et al. Advances in genetic study of heading stage in wheat[J]. Journal of Triticeae Crops, 2023, 43(8): 992-997. (in Chinese with English abstract)
|
[5] |
刘国祥. 小麦抽穗期基因TaHdM605精细作图[D]. 北京: 中国农业科学院, 2015.
|
|
LIU G X. Fine mapping of heading date gene TaHdM 605 in hexaploid wheat (Triticum aestivum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
|
[6] |
曾莲, 张华, 柳絮, 等. 水稻抽穗期基因Hd7m的定位及遗传分析[J]. 山东农业科学, 2015, 47(1): 10-13.
|
|
ZENG L, ZHANG H, LIU X, et al. Mapping and genetic analysis of heading date gene Hd7m in rice[J]. Shandong Agricultural Sciences, 2015, 47(1): 10-13. (in Chinese with English abstract)
|
[7] |
李允振, 黄永禄, 谢旭阳, 等. 水稻抽穗期基因EHD8的遗传分析及精细定位[J]. 中国科技论文, 2017, 12(12): 1336-1340.
|
|
LI Y Z, HUANG Y L, XIE X Y, et al. Genetic analysis and fine-mapping of a rice heading date gene EHD8[J]. China Sciencepaper, 2017, 12(12): 1336-1340. (in Chinese with English abstract)
|
[8] |
缪一栩. 水稻抽穗期基因DTH6的定位与育种利用研究[D]. 扬州: 扬州大学, 2020.
|
|
MIAO Y X. Mapping and breeding utilization research of DTH6, a heading date gene in rice[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract)
|
[9] |
DOUST A N, LUKENS L, OLSEN K M, et al. Beyond the single gene: how epistasis and gene-by-environment effects influence crop domestication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6178-6183.
DOI
PMID
|
[10] |
YANG Z R, ZHANG H S, LI X K, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C(4) model system[J]. Nature Plants, 2020, 6(9): 1167-1178.
|
[11] |
WANG Y J, DENG D X, ZHANG R, et al. Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species[J]. Molecular Biology Reports, 2012, 39(5): 6267-6282.
DOI
PMID
|
[12] |
MYLNE J S, MAS C, HILL J M. NMR assignment and secondary structure of the C-terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1[J]. Biomolecular NMR Assignments, 2012, 6(1): 5-8.
|
[13] |
WANG Y J, DENG D X, SHI Y T, et al. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes[J]. Molecular Biology Reports, 2012, 39(3): 2401-2415.
|
[14] |
孙亭亭, 王大伟, 龚达平, 等. 番茄B3超家族成员鉴定及生物信息学分析[J]. 植物遗传资源学报, 2015, 16(4): 806-814.
DOI
|
|
SUN T T, WANG D W, GONG D P, et al. Genome-wide identification and bioinformatic analysis of B3 superfamily in tomato[J]. Journal of Plant Genetic Resources, 2015, 16(4): 806-814. (in Chinese with English abstract)
|
[15] |
吴佳军, 俞率成, 刘志刚, 等. 毛竹B3家族全基因组鉴定及表达模式分析[J]. 农业生物技术学报, 2019, 27(1): 43-54.
|
|
WU J J, YU S C, LIU Z G, et al. Genome identification and expression pattern analysis of Phyllostachys edulis B3 family[J]. Journal of Agricultural Biotechnology, 2019, 27(1): 43-54. (in Chinese with English abstract)
|
[16] |
SCHRUFF M C, SPIELMAN M, TIWARI S, et al. The auxin response factor 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J]. Development, 2006, 133(2): 251-261.
|
[17] |
LI H, JOHNSON P, STEPANOVA A, et al. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis[J]. Developmental Cell, 2004, 7(2): 193-204.
|
[18] |
SUGLIANI M, BRAMBILLA V, CLERKX E J M, et al. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis[J]. The Plant Cell, 2010, 22(6): 1936-1946.
|
[19] |
CHIU R S, NAHAL H, PROVART N J, et al. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature[J]. BMC Plant Biology, 2012, 12: 15.
|
[20] |
KIM S, SOLTIS P S, WALL K, et al. Phylogeny and domain evolution in the APETALA2-like gene family[J]. Molecular Biology and Evolution, 2006, 23(1): 107-120.
PMID
|
[21] |
LEVY Y Y, MESNAGE S, MYLNE J S, et al. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control[J]. Science, 2002, 297(5579): 243-246.
|
[22] |
MUTHAMILARASAN M, DHAKA A, YADAV R, et al. Exploration of millet models for developing nutrient rich graminaceous crops[J]. Plant Science, 2016, 242: 89-97.
DOI
PMID
|
[23] |
ZHANG G Y, LIU X, QUAN Z W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology, 2012, 30(6): 549-554.
DOI
PMID
|
[24] |
贾小平, 袁玺垒, 李剑峰, 等. 不同光温条件谷子资源主要农艺性状的综合评价[J]. 中国农业科学, 2018, 51(13): 2429-2441.
DOI
|
|
JIA X P, YUAN X L, LI J F, et al. Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions[J]. Scientia Agricultura Sinica, 2018, 51(13): 2429-2441. (in Chinese with English abstract)
DOI
|
[25] |
YE N H, YANG G Z, CHEN Y, et al. Two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice[J]. Journal of Integrative Plant Biology, 2014, 56(2): 170-180.
|
[26] |
黄巍. 拟南芥可变剪切对CO2和O3浓度变化的响应研究[D]. 杭州: 浙江大学, 2019.
|
|
HUANG W. Changes of alternative splice in Arabidopsis thaliana grown under different CO2 and O3 concentration[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
|
[27] |
钟雅珠. FT的可变剪切调控高、矮种椰子花期变异的分子机制研究[D]. 金华: 浙江师范大学, 2021.
|
|
ZHONG Y Z. Molecular mechanisms regulation of alternative splicing of FT related to differences in flowering time between tall and drawf coconut[D]. Jinhua: Zhejiang Normal University, 2021. (in Chinese with English abstract)
|
[28] |
杨帅. 水稻幼苗应答非生物胁迫及植物激素的mRNA可变剪切分析[D]. 武汉: 华中农业大学, 2021.
|
|
YANG S. Analysis of mRNA alternative splicing in rice seedlings in response to abiotic stress and plant hormone treatment[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract)
|
[29] |
廉美婷. 马铃薯全基因组转录因子鉴定及cDNA文库构建[D]. 武汉: 华中农业大学, 2019.
|
|
LIAN M T. Genome-wide identification and library construction of potato transcription factors[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract)
|