浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 1957-1968.DOI: 10.3969/j.issn.1004-1524.20240340
收稿日期:2024-04-12
出版日期:2024-09-25
发布日期:2024-09-30
作者简介:沈志成,E-mail: zcshen@zju.edu.cn通讯作者:
沈志成,E-mail: 基金资助:
WU Haofeng1(
), LIN Zhaoyang1,2, SHEN Zhicheng1,*(
)
Received:2024-04-12
Online:2024-09-25
Published:2024-09-30
摘要:
杂草防治是水稻生产中的重要环节。该研究将耐草甘膦基因CP4-EPSPS和耐除草剂基因P450-N-Z1转入粳稻品种秀水134中,筛选获得一个对草甘膦以及啶嘧磺隆均具有良好耐受性的转化体GF-9。田间试验结果显示,该转化体能够耐受1 800 g·hm-2(以酸当量计)草甘膦酸和30 g·hm-2(以有效成分计)啶嘧磺隆活性成分的复合除草剂。分子特征鉴定结果表明,GF-9是单拷贝T-DNA转化体,其整合位点不在已知的注释基因中。田间初步试验表明,GF-9的田间表现型与非转基因对照相比无显著差异。综上所述,GF-9是具有潜在商业价值的转基因耐除草剂水稻转化体。
中图分类号:
吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968.
WU Haofeng, LIN Zhaoyang, SHEN Zhicheng. A transgenic rice resistant to glyphosate and flazasulfuron[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1957-1968.
| 除草剂浓度 Herbicide concentration | 41%草甘膦异丙胺盐水剂用量 41% Glyphosate isopropylamine aqueous solution dosage | 25%啶嘧磺隆水分散粒剂用量 25% Flazasulfuron water dispersible granules dosage |
|---|---|---|
| 0(清水Water control) | 0 | 0 |
| 1倍浓度Single concentration | 5 mL·L-1(900 g·hm-2) | 0.1 g·L-1(15 g·hm-2) |
| 2倍浓度Double concentration | 10 mL·L-1(1 800 g·hm-2) | 0.2 g·L-1(30 g·hm-2) |
| 4倍浓度Quadruple concentration | 20 mL·L-1(3 600 g·hm-2) | 0.4 g·L-1(60 g·hm-2) |
表1 复合除草剂成分表
Table 1 List of compound herbicide ingredients
| 除草剂浓度 Herbicide concentration | 41%草甘膦异丙胺盐水剂用量 41% Glyphosate isopropylamine aqueous solution dosage | 25%啶嘧磺隆水分散粒剂用量 25% Flazasulfuron water dispersible granules dosage |
|---|---|---|
| 0(清水Water control) | 0 | 0 |
| 1倍浓度Single concentration | 5 mL·L-1(900 g·hm-2) | 0.1 g·L-1(15 g·hm-2) |
| 2倍浓度Double concentration | 10 mL·L-1(1 800 g·hm-2) | 0.2 g·L-1(30 g·hm-2) |
| 4倍浓度Quadruple concentration | 20 mL·L-1(3 600 g·hm-2) | 0.4 g·L-1(60 g·hm-2) |
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| CP4-F | ATGGCGGCGACCATGGCGTCCAACG |
| CP4-R | TCAAGCGGCCTTCGTGTCAGACAGTTC |
| N-Z1-F | ATGGATAAGGCCTACGTGGCCCTCC |
| N-Z1-R | TCAGAGCTCCTGCAAAACCTCACGC |
表2 外源基因的PCR引物序列
Table 2 PCR primer sequences for the foreign genes
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| CP4-F | ATGGCGGCGACCATGGCGTCCAACG |
| CP4-R | TCAAGCGGCCTTCGTGTCAGACAGTTC |
| N-Z1-F | ATGGATAAGGCCTACGTGGCCCTCC |
| N-Z1-R | TCAGAGCTCCTGCAAAACCTCACGC |
| 引物Primer | 引物序列Primer sequences(5'→3') |
|---|---|
| LB-SPI | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
| LB-SP2a | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCATATAAGAAACCCTTAG |
| LB-SPIII | CTAAAACCAAAATCCAGTACTAAAATCC |
| RB-0b | CGTGACTGGGAAAACCCTGGCGTT |
| RB-1b | ACGATGGACTCCAGTCCGGCCCAACTTAATCGCCTTGCAGCACATC |
| RB-2b | GAAGAGGCCCGCACCGATCGCCCTT |
| LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
| LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
| LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
| LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
| AC1 | ACGATGGACTCCAGAG |
表3 高效热不对称交错PCR引物序列
Table 3 Primers sequences for high-efficiency thermal asymmetric interlaced PCR
| 引物Primer | 引物序列Primer sequences(5'→3') |
|---|---|
| LB-SPI | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
| LB-SP2a | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCATATAAGAAACCCTTAG |
| LB-SPIII | CTAAAACCAAAATCCAGTACTAAAATCC |
| RB-0b | CGTGACTGGGAAAACCCTGGCGTT |
| RB-1b | ACGATGGACTCCAGTCCGGCCCAACTTAATCGCCTTGCAGCACATC |
| RB-2b | GAAGAGGCCCGCACCGATCGCCCTT |
| LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
| LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
| LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
| LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
| AC1 | ACGATGGACTCCAGAG |
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| L1 | CTCCCCCATTCTGGCTTGGAA |
| L2 | CATTGTGAAGCCCTCGAGTAATTGG |
| L3 | ACCGGAGACATATAGTGCTGGTTT |
| R1 | TGGGCGCTCTTCGACGGATT |
| R2 | GGCCATCGCAGCCATTAAATCG |
| R3 | TCCTCTGTGGGGCTTTGGAC |
表4 边界验证引物序列
Table 4 Boundary validation primer sequence
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| L1 | CTCCCCCATTCTGGCTTGGAA |
| L2 | CATTGTGAAGCCCTCGAGTAATTGG |
| L3 | ACCGGAGACATATAGTGCTGGTTT |
| R1 | TGGGCGCTCTTCGACGGATT |
| R2 | GGCCATCGCAGCCATTAAATCG |
| R3 | TCCTCTGTGGGGCTTTGGAC |
图2 转化体的温室草甘膦耐受试验结果 Water,清水处理;Glyphosate,900 g·hm-2(以酸当量计)的草甘膦处理;TG,GF系列转基因水稻转化体;NT,非转基因对照组。
Fig.2 Glyphosate tolerance test results of transgenic rice events in greenhouse Water, Water control; Glyphosate, Spary glyphosate at a rate of 900 g·hm-2 (based on acid equivalent); TG, GF series transgenic rice events; NT, Non-transgenic control.
图3 转化体的温室啶嘧磺隆耐受试验结果 Water,清水处理;Flazasulfuron,15 g·hm-2(以有效成分计)的啶嘧磺隆处理;TG,GF系列转基因水稻转化体;NT,非转基因对照组。
Fig.3 Flazasulfuron tolerance test results of transgenic rice events in greenhouse Water, Water control; Flazasulfuron, Spary flazasulfuron at a rate of 15 g·hm-2 (based on active ingredient); TG, GF series transgenic rice events; NT, Non-transgenic control.
图4 复合除草剂稻田除草效果图 A,复合除草剂喷施7 d后稻田杂草发生情况;B,复合除草剂喷施28 d后稻田杂草发生情况;TG,GF系列转基因水稻转化体;NT,非转基因对照组;1倍,1倍浓度复合除草剂处理;2倍,2倍浓度复合除草剂处理;4倍,4倍浓度复合除草剂处理。
Fig.4 Images of weed control effects in paddy fields using compound herbicides A, Occurrence of weeds in rice fields 7 days after application of a mixed herbicide;B, Occurrence of weeds in rice fields 28 days after application of a mixed herbicide; TG, GF series transgenic rice events; NT, Non-transgenic control; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
图5 GF-9在不同浓度除草剂处理28 d后的受害情况 TG,GF系列转基因水稻转化体;NT,非转基因对照组;1倍,1倍浓度复合除草剂处理;2倍,2倍浓度复合除草剂处理;4倍,4倍浓度复合除草剂处理。
Fig.5 The damage situation of GF-9 after 28 days of treatment with different concentrations of herbicide TG, GF series transgenic rice events; NT, Non-transgenic control; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
| 除草剂浓度 Herbicide concentration | GF-9 | 秀水134 XS-134 |
|---|---|---|
| 0(清水Water control) | 83.57±2.44 Aa | 86.16±3.67 A |
| 1倍浓度Single concentration | 82.03±2.38 a | — |
| 2倍浓度Double concentration | 78.50±2.36 b | 00.00±0.00 |
| 4倍浓度 | 78.20±2.57 b | — |
| Quadruple concentration |
表5 GF-9在不同浓度除草剂处理下的株高
Table 5 Plant height for GF-9 under different herbicide concentrations
| 除草剂浓度 Herbicide concentration | GF-9 | 秀水134 XS-134 |
|---|---|---|
| 0(清水Water control) | 83.57±2.44 Aa | 86.16±3.67 A |
| 1倍浓度Single concentration | 82.03±2.38 a | — |
| 2倍浓度Double concentration | 78.50±2.36 b | 00.00±0.00 |
| 4倍浓度 | 78.20±2.57 b | — |
| Quadruple concentration |
| 试验材料 Material | 除草剂浓度 Herbicide concentration | 穗长 Panicle length/cm | 分蘖数 Tiller number | 百粒重 Hundred-grain weight/g | 结实率 Setting rate% |
|---|---|---|---|---|---|
| GF-9 | 0(清水Water control) | 14.82±0.72 Aa | 9.00±1.18 Aa | 2.536±0.027 Aa | 68.29±4.60 Aa |
| 1倍浓度Single concentration | 15.84±0.81 a | 10.20±2.35 a | 2.575±0.025 a | 71.01±7.52 a | |
| 2倍浓度Double concentration | 15.72±1.05 a | 10.20±2.30 a | 2.519±0.048 a | 69.12±5.49 a | |
| 4倍浓度Quadruple concentration | 15.47±1.21 a | 8.58±2.50 a | 2.254±0.042 b | 55.20±2.60 b | |
| 秀水134 XS-134 | 0(清水Water control) | 14.32±1.57 A | 8.50±1.35 A | 2.543±0.051 A | 65.00±5.70 A |
表6 GF-9在不同浓度除草剂处理下田间表现型
Table 6 Agronomic performance of GF-9 under different concentrations of herbicide
| 试验材料 Material | 除草剂浓度 Herbicide concentration | 穗长 Panicle length/cm | 分蘖数 Tiller number | 百粒重 Hundred-grain weight/g | 结实率 Setting rate% |
|---|---|---|---|---|---|
| GF-9 | 0(清水Water control) | 14.82±0.72 Aa | 9.00±1.18 Aa | 2.536±0.027 Aa | 68.29±4.60 Aa |
| 1倍浓度Single concentration | 15.84±0.81 a | 10.20±2.35 a | 2.575±0.025 a | 71.01±7.52 a | |
| 2倍浓度Double concentration | 15.72±1.05 a | 10.20±2.30 a | 2.519±0.048 a | 69.12±5.49 a | |
| 4倍浓度Quadruple concentration | 15.47±1.21 a | 8.58±2.50 a | 2.254±0.042 b | 55.20±2.60 b | |
| 秀水134 XS-134 | 0(清水Water control) | 14.32±1.57 A | 8.50±1.35 A | 2.543±0.051 A | 65.00±5.70 A |
图6 不同浓度除草剂处理下GF-9的穗长与结实率情况 NT,清水处理下的非转基因对照;1倍,1倍浓度复合除草剂处理;2倍,2倍浓度复合除草剂处理;4倍,4倍浓度复合除草剂处理。
Fig.6 Panicle length and fruiting rate of GF-9 under different concentrations of herbicide NT, Non-transgenic control under water treatment; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
图7 GF-9的外源基因PCR检测结果 A,CP4-EPSPS基因的PCR检测结果;B,P450-N-Z1基因的PCR检测结果;M,DNA标准分子量;+,阳性质粒;-,非转基因对照;1,GF-9 T0代样品基因组;2~4,GF-9 T1代样品基因组;3~7,GF-9 T2代样品基因组。
Fig.7 PCR detection results of the transgenes in GF-9 A, PCR results of CP4-EPSPS gene; B, PCR results of P450-N-Z1 gene; M, DNA Marker; +, Positive plasmid; -, Non-transgenic control; 1, GF-9 T0 generation sample genome; 2-4, GF-9 T1 generation sample genome; 3-7, GF-9 T2 generation sample genome.
图8 水稻转化体GF-9的边界验证结果 A,GF-9的左边界PCR验证结果;B,GF-9的右边界PCR验证结果。M,DNA长度标记;L1~L3,T-DNA左边界外三个不同距离的验证引物分别与LB-SPI的PCR结果;R1~R3,T-DNA右边界外3个距离的验证引物分别与RB-0b的PCR结果;-,阴性水稻对照组。
Fig.8 Boundary verification results of the event GF-9 A, PCR validation results of the left border of GF-9; B, PCR validation results of the right border of GF-9. M, DNA Marker; L1-L3, PCR results of the verification primers for three different distances outside the left border of T-DNA, respectively with LB-SPI; R1-R3, PCR results of the verification primers for three different distances outside the right border of T-DNA, respectively with RB-0b; -, Negative rice control.
图9 GF-9的外源T-DNA基因组整合模型及边界测序验证结果 L1~L3,T-DNA左边界验证引物;R1~R3,T-DNA右边界验证引物。
Fig.9 Integration model of the foreign T-DNA in GF-9 and verification results of the boundary sequencing L1-L3, Primers for validating the left border of T-DNA.; R1-R3, Primers for validating the right border of T-DNA.
图10 GF-9的限制性内切酶和CP4探针的位置和预期杂交信号带大小示意图 Probe,制作探针所用的基因序列。
Fig.10 Schematic diagram of GF-9 restriction enzyme and CP4 probe location and expected hybridization signal band size Probe, Gene sequence used to make probe.
图12 CP4-EPSPS蛋白的Western blot检测结果 M,蛋白标准分子量;+,原核表达的CP4-EPSPS蛋白;-,非转基因水稻对照组;1~7,T1代转化体GF-9的7棵植株。
Fig.12 Western blot results of CP4-EPSPS protein M, Protein pageruler; +, CP4-EPSPS protein expressed in prokaryotes; -, Non-transgenic rice control group; 1-7, Seven independent plants of T1 generation transgenic line GF-9.
| [1] | AKBAR N, EHSANULLAH, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
| [2] |
DUKE S O, POWLES S B. Glyphosate: a once-in-a-century herbicide[J]. Pest Management Science, 2008, 64(4): 319-325.
DOI PMID |
| [3] | BENTLEY R. The shikimate pathway: a metabolic tree with many branches[J]. Critical Reviews in Biochemistry and Molecular Biology, 1990, 25(5): 307-384. |
| [4] |
DILL G M. Glyphosate-resistant crops: history, status and future[J]. Pest Management Science, 2005, 61(3): 219-224.
DOI PMID |
| [5] | 陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展[J]. 植物保护, 2017, 43(2): 17-24. |
| CHEN S G, QIANG S, MAO C J. Mechanism of action of glyphosate and research advances in glyphosate resistance[J]. Plant Protection, 2017, 43(2): 17-24. (in Chinese with English abstract) | |
| [6] | 沈国辉, 杨烈, 钱振官, 等. 秀百宫: 暖季型草坪广谱性除草剂[J]. 草原与草坪, 2001, 21(3): 49-51. |
| SHEN G H, YANG L, QIAN Z G, et al. Shibagen: a broad spectrum herbicide for weed control in warm season turfgrass[J]. Grassland and Turf, 2001, 21(3): 49-51. (in Chinese with English abstract) | |
| [7] | 范文政. 啶嘧磺隆: 葡萄、柑橘、橄榄、甘蔗和非耕地的新型除草剂[J]. 世界农药, 2004, 26(1): 48-49. |
| FAN W Z. Flazasulfuron:the new herbicides for grapes, citrus, olives, sugarcane, and non-agricultural fields.[J]. World Pesticide, 2004, 26(1): 48-49. (in Chinese) | |
| [8] | ZHENG T, YU X X, SUN Y Z, et al. Expression of a cytochrome P450 gene from Bermuda grass Cynodon dactylon in soybean confers tolerance to multiple herbicides[J]. Plants, 2022, 11(7): 949. |
| [9] | HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1): 205-218. |
| [10] | HEALEY A, FURTADO A, COOPER T, et al. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species[J]. Plant Methods, 2014, 10(1): 21. |
| [11] | LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654. |
| [12] |
胡江博, 任正鹏, 丁翔, 等. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19.
DOI |
|
HU J B, REN Z P, DING X, et al. Application of herbicides in rice fields and research progress on herbicide-resistant rice varieties breeding[J]. China Rice, 2023, 29(4): 13-19. (in Chinese with English abstract)
DOI |
|
| [13] | 刘庆虎, 陈国奇, 张玉华, 等. 不同叶龄千金子、稗和马唐对氰氟草酯和五氟磺草胺的敏感性[J]. 南京农业大学学报, 2016, 39(5): 771-776. |
| LIU Q H, CHEN G Q, ZHANG Y H, et al. Sensitivities of Leptochloa chinensis, Echinochloa crusgalli and Digitaria sanguinalis at different leaf stages to cyhalofop-butyl and penoxsulam[J]. Journal of Nanjing Agricultural University, 2016, 39(5): 771-776. (in Chinese with English abstract) | |
| [14] | DAMALAS C A, KOUTROUBAS S D. Herbicide-resistant barnyardgrass (Echinochloa crusgalli) in global rice production[J]. Weed Biology and Management, 2023, 23(1): 23-33. |
| [15] |
KAWAHIGASHI H, HIROSE S, OHKAWA H, et al. Herbicide resistance of transgenic rice plants expressing human CYP1A1[J]. Biotechnology Advances, 2007, 25(1): 75-84.
PMID |
| [16] | HAN H P, YU Q, BEFFA R, et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides a cross at least five modes of action[J]. The Plant Journal, 2021, 105(1): 79-92. |
| [1] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [2] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [3] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. |
| [4] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [5] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [6] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [7] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [8] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
| [9] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [10] | 谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547. |
| [11] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
| [12] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
| [13] | 徐伟东, 陆强, 姚张良, 王晖, 王瑞森, 郎淑平. 水稻田夏熟杂草多样性特征对不同轮作模式的响应[J]. 浙江农业学报, 2025, 37(10): 2138-2149. |
| [14] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
| [15] | 颜晶莹, 倪亮, 沈星宇, 李玉. 热处理对转基因秸秆中重组蛋白和重组DNA的降解作用[J]. 浙江农业学报, 2024, 36(9): 2079-2088. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||