浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 1957-1968.DOI: 10.3969/j.issn.1004-1524.20240340
收稿日期:
2024-04-12
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
沈志成,E-mail: zcshen@zju.edu.cn通讯作者:
沈志成,E-mail: 基金资助:
WU Haofeng1(), LIN Zhaoyang1,2, SHEN Zhicheng1,*(
)
Received:
2024-04-12
Online:
2024-09-25
Published:
2024-09-30
摘要:
杂草防治是水稻生产中的重要环节。该研究将耐草甘膦基因CP4-EPSPS和耐除草剂基因P450-N-Z1转入粳稻品种秀水134中,筛选获得一个对草甘膦以及啶嘧磺隆均具有良好耐受性的转化体GF-9。田间试验结果显示,该转化体能够耐受1 800 g·hm-2(以酸当量计)草甘膦酸和30 g·hm-2(以有效成分计)啶嘧磺隆活性成分的复合除草剂。分子特征鉴定结果表明,GF-9是单拷贝T-DNA转化体,其整合位点不在已知的注释基因中。田间初步试验表明,GF-9的田间表现型与非转基因对照相比无显著差异。综上所述,GF-9是具有潜在商业价值的转基因耐除草剂水稻转化体。
中图分类号:
吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968.
WU Haofeng, LIN Zhaoyang, SHEN Zhicheng. A transgenic rice resistant to glyphosate and flazasulfuron[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1957-1968.
除草剂浓度 Herbicide concentration | 41%草甘膦异丙胺盐水剂用量 41% Glyphosate isopropylamine aqueous solution dosage | 25%啶嘧磺隆水分散粒剂用量 25% Flazasulfuron water dispersible granules dosage |
---|---|---|
0(清水Water control) | 0 | 0 |
1倍浓度Single concentration | 5 mL·L-1(900 g·hm-2) | 0.1 g·L-1(15 g·hm-2) |
2倍浓度Double concentration | 10 mL·L-1(1 800 g·hm-2) | 0.2 g·L-1(30 g·hm-2) |
4倍浓度Quadruple concentration | 20 mL·L-1(3 600 g·hm-2) | 0.4 g·L-1(60 g·hm-2) |
表1 复合除草剂成分表
Table 1 List of compound herbicide ingredients
除草剂浓度 Herbicide concentration | 41%草甘膦异丙胺盐水剂用量 41% Glyphosate isopropylamine aqueous solution dosage | 25%啶嘧磺隆水分散粒剂用量 25% Flazasulfuron water dispersible granules dosage |
---|---|---|
0(清水Water control) | 0 | 0 |
1倍浓度Single concentration | 5 mL·L-1(900 g·hm-2) | 0.1 g·L-1(15 g·hm-2) |
2倍浓度Double concentration | 10 mL·L-1(1 800 g·hm-2) | 0.2 g·L-1(30 g·hm-2) |
4倍浓度Quadruple concentration | 20 mL·L-1(3 600 g·hm-2) | 0.4 g·L-1(60 g·hm-2) |
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
CP4-F | ATGGCGGCGACCATGGCGTCCAACG |
CP4-R | TCAAGCGGCCTTCGTGTCAGACAGTTC |
N-Z1-F | ATGGATAAGGCCTACGTGGCCCTCC |
N-Z1-R | TCAGAGCTCCTGCAAAACCTCACGC |
表2 外源基因的PCR引物序列
Table 2 PCR primer sequences for the foreign genes
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
CP4-F | ATGGCGGCGACCATGGCGTCCAACG |
CP4-R | TCAAGCGGCCTTCGTGTCAGACAGTTC |
N-Z1-F | ATGGATAAGGCCTACGTGGCCCTCC |
N-Z1-R | TCAGAGCTCCTGCAAAACCTCACGC |
引物Primer | 引物序列Primer sequences(5'→3') |
---|---|
LB-SPI | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
LB-SP2a | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCATATAAGAAACCCTTAG |
LB-SPIII | CTAAAACCAAAATCCAGTACTAAAATCC |
RB-0b | CGTGACTGGGAAAACCCTGGCGTT |
RB-1b | ACGATGGACTCCAGTCCGGCCCAACTTAATCGCCTTGCAGCACATC |
RB-2b | GAAGAGGCCCGCACCGATCGCCCTT |
LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
AC1 | ACGATGGACTCCAGAG |
表3 高效热不对称交错PCR引物序列
Table 3 Primers sequences for high-efficiency thermal asymmetric interlaced PCR
引物Primer | 引物序列Primer sequences(5'→3') |
---|---|
LB-SPI | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
LB-SP2a | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCATATAAGAAACCCTTAG |
LB-SPIII | CTAAAACCAAAATCCAGTACTAAAATCC |
RB-0b | CGTGACTGGGAAAACCCTGGCGTT |
RB-1b | ACGATGGACTCCAGTCCGGCCCAACTTAATCGCCTTGCAGCACATC |
RB-2b | GAAGAGGCCCGCACCGATCGCCCTT |
LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
AC1 | ACGATGGACTCCAGAG |
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
L1 | CTCCCCCATTCTGGCTTGGAA |
L2 | CATTGTGAAGCCCTCGAGTAATTGG |
L3 | ACCGGAGACATATAGTGCTGGTTT |
R1 | TGGGCGCTCTTCGACGGATT |
R2 | GGCCATCGCAGCCATTAAATCG |
R3 | TCCTCTGTGGGGCTTTGGAC |
表4 边界验证引物序列
Table 4 Boundary validation primer sequence
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
L1 | CTCCCCCATTCTGGCTTGGAA |
L2 | CATTGTGAAGCCCTCGAGTAATTGG |
L3 | ACCGGAGACATATAGTGCTGGTTT |
R1 | TGGGCGCTCTTCGACGGATT |
R2 | GGCCATCGCAGCCATTAAATCG |
R3 | TCCTCTGTGGGGCTTTGGAC |
图2 转化体的温室草甘膦耐受试验结果 Water,清水处理;Glyphosate,900 g·hm-2(以酸当量计)的草甘膦处理;TG,GF系列转基因水稻转化体;NT,非转基因对照组。
Fig.2 Glyphosate tolerance test results of transgenic rice events in greenhouse Water, Water control; Glyphosate, Spary glyphosate at a rate of 900 g·hm-2 (based on acid equivalent); TG, GF series transgenic rice events; NT, Non-transgenic control.
图3 转化体的温室啶嘧磺隆耐受试验结果 Water,清水处理;Flazasulfuron,15 g·hm-2(以有效成分计)的啶嘧磺隆处理;TG,GF系列转基因水稻转化体;NT,非转基因对照组。
Fig.3 Flazasulfuron tolerance test results of transgenic rice events in greenhouse Water, Water control; Flazasulfuron, Spary flazasulfuron at a rate of 15 g·hm-2 (based on active ingredient); TG, GF series transgenic rice events; NT, Non-transgenic control.
图4 复合除草剂稻田除草效果图 A,复合除草剂喷施7 d后稻田杂草发生情况;B,复合除草剂喷施28 d后稻田杂草发生情况;TG,GF系列转基因水稻转化体;NT,非转基因对照组;1倍,1倍浓度复合除草剂处理;2倍,2倍浓度复合除草剂处理;4倍,4倍浓度复合除草剂处理。
Fig.4 Images of weed control effects in paddy fields using compound herbicides A, Occurrence of weeds in rice fields 7 days after application of a mixed herbicide;B, Occurrence of weeds in rice fields 28 days after application of a mixed herbicide; TG, GF series transgenic rice events; NT, Non-transgenic control; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
图5 GF-9在不同浓度除草剂处理28 d后的受害情况 TG,GF系列转基因水稻转化体;NT,非转基因对照组;1倍,1倍浓度复合除草剂处理;2倍,2倍浓度复合除草剂处理;4倍,4倍浓度复合除草剂处理。
Fig.5 The damage situation of GF-9 after 28 days of treatment with different concentrations of herbicide TG, GF series transgenic rice events; NT, Non-transgenic control; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
除草剂浓度 Herbicide concentration | GF-9 | 秀水134 XS-134 |
---|---|---|
0(清水Water control) | 83.57±2.44 Aa | 86.16±3.67 A |
1倍浓度Single concentration | 82.03±2.38 a | — |
2倍浓度Double concentration | 78.50±2.36 b | 00.00±0.00 |
4倍浓度 | 78.20±2.57 b | — |
Quadruple concentration |
表5 GF-9在不同浓度除草剂处理下的株高
Table 5 Plant height for GF-9 under different herbicide concentrations
除草剂浓度 Herbicide concentration | GF-9 | 秀水134 XS-134 |
---|---|---|
0(清水Water control) | 83.57±2.44 Aa | 86.16±3.67 A |
1倍浓度Single concentration | 82.03±2.38 a | — |
2倍浓度Double concentration | 78.50±2.36 b | 00.00±0.00 |
4倍浓度 | 78.20±2.57 b | — |
Quadruple concentration |
试验材料 Material | 除草剂浓度 Herbicide concentration | 穗长 Panicle length/cm | 分蘖数 Tiller number | 百粒重 Hundred-grain weight/g | 结实率 Setting rate% |
---|---|---|---|---|---|
GF-9 | 0(清水Water control) | 14.82±0.72 Aa | 9.00±1.18 Aa | 2.536±0.027 Aa | 68.29±4.60 Aa |
1倍浓度Single concentration | 15.84±0.81 a | 10.20±2.35 a | 2.575±0.025 a | 71.01±7.52 a | |
2倍浓度Double concentration | 15.72±1.05 a | 10.20±2.30 a | 2.519±0.048 a | 69.12±5.49 a | |
4倍浓度Quadruple concentration | 15.47±1.21 a | 8.58±2.50 a | 2.254±0.042 b | 55.20±2.60 b | |
秀水134 XS-134 | 0(清水Water control) | 14.32±1.57 A | 8.50±1.35 A | 2.543±0.051 A | 65.00±5.70 A |
表6 GF-9在不同浓度除草剂处理下田间表现型
Table 6 Agronomic performance of GF-9 under different concentrations of herbicide
试验材料 Material | 除草剂浓度 Herbicide concentration | 穗长 Panicle length/cm | 分蘖数 Tiller number | 百粒重 Hundred-grain weight/g | 结实率 Setting rate% |
---|---|---|---|---|---|
GF-9 | 0(清水Water control) | 14.82±0.72 Aa | 9.00±1.18 Aa | 2.536±0.027 Aa | 68.29±4.60 Aa |
1倍浓度Single concentration | 15.84±0.81 a | 10.20±2.35 a | 2.575±0.025 a | 71.01±7.52 a | |
2倍浓度Double concentration | 15.72±1.05 a | 10.20±2.30 a | 2.519±0.048 a | 69.12±5.49 a | |
4倍浓度Quadruple concentration | 15.47±1.21 a | 8.58±2.50 a | 2.254±0.042 b | 55.20±2.60 b | |
秀水134 XS-134 | 0(清水Water control) | 14.32±1.57 A | 8.50±1.35 A | 2.543±0.051 A | 65.00±5.70 A |
图6 不同浓度除草剂处理下GF-9的穗长与结实率情况 NT,清水处理下的非转基因对照;1倍,1倍浓度复合除草剂处理;2倍,2倍浓度复合除草剂处理;4倍,4倍浓度复合除草剂处理。
Fig.6 Panicle length and fruiting rate of GF-9 under different concentrations of herbicide NT, Non-transgenic control under water treatment; Single, Single concentration compound herbicide treatment; Double, Double concentration compound herbicide treatment; Quadruple, Quadruple concentration compound herbicide treatment.
图7 GF-9的外源基因PCR检测结果 A,CP4-EPSPS基因的PCR检测结果;B,P450-N-Z1基因的PCR检测结果;M,DNA标准分子量;+,阳性质粒;-,非转基因对照;1,GF-9 T0代样品基因组;2~4,GF-9 T1代样品基因组;3~7,GF-9 T2代样品基因组。
Fig.7 PCR detection results of the transgenes in GF-9 A, PCR results of CP4-EPSPS gene; B, PCR results of P450-N-Z1 gene; M, DNA Marker; +, Positive plasmid; -, Non-transgenic control; 1, GF-9 T0 generation sample genome; 2-4, GF-9 T1 generation sample genome; 3-7, GF-9 T2 generation sample genome.
图8 水稻转化体GF-9的边界验证结果 A,GF-9的左边界PCR验证结果;B,GF-9的右边界PCR验证结果。M,DNA长度标记;L1~L3,T-DNA左边界外三个不同距离的验证引物分别与LB-SPI的PCR结果;R1~R3,T-DNA右边界外3个距离的验证引物分别与RB-0b的PCR结果;-,阴性水稻对照组。
Fig.8 Boundary verification results of the event GF-9 A, PCR validation results of the left border of GF-9; B, PCR validation results of the right border of GF-9. M, DNA Marker; L1-L3, PCR results of the verification primers for three different distances outside the left border of T-DNA, respectively with LB-SPI; R1-R3, PCR results of the verification primers for three different distances outside the right border of T-DNA, respectively with RB-0b; -, Negative rice control.
图9 GF-9的外源T-DNA基因组整合模型及边界测序验证结果 L1~L3,T-DNA左边界验证引物;R1~R3,T-DNA右边界验证引物。
Fig.9 Integration model of the foreign T-DNA in GF-9 and verification results of the boundary sequencing L1-L3, Primers for validating the left border of T-DNA.; R1-R3, Primers for validating the right border of T-DNA.
图10 GF-9的限制性内切酶和CP4探针的位置和预期杂交信号带大小示意图 Probe,制作探针所用的基因序列。
Fig.10 Schematic diagram of GF-9 restriction enzyme and CP4 probe location and expected hybridization signal band size Probe, Gene sequence used to make probe.
图12 CP4-EPSPS蛋白的Western blot检测结果 M,蛋白标准分子量;+,原核表达的CP4-EPSPS蛋白;-,非转基因水稻对照组;1~7,T1代转化体GF-9的7棵植株。
Fig.12 Western blot results of CP4-EPSPS protein M, Protein pageruler; +, CP4-EPSPS protein expressed in prokaryotes; -, Non-transgenic rice control group; 1-7, Seven independent plants of T1 generation transgenic line GF-9.
[1] | AKBAR N, EHSANULLAH, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
[2] |
DUKE S O, POWLES S B. Glyphosate: a once-in-a-century herbicide[J]. Pest Management Science, 2008, 64(4): 319-325.
DOI PMID |
[3] | BENTLEY R. The shikimate pathway: a metabolic tree with many branches[J]. Critical Reviews in Biochemistry and Molecular Biology, 1990, 25(5): 307-384. |
[4] |
DILL G M. Glyphosate-resistant crops: history, status and future[J]. Pest Management Science, 2005, 61(3): 219-224.
DOI PMID |
[5] | 陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展[J]. 植物保护, 2017, 43(2): 17-24. |
CHEN S G, QIANG S, MAO C J. Mechanism of action of glyphosate and research advances in glyphosate resistance[J]. Plant Protection, 2017, 43(2): 17-24. (in Chinese with English abstract) | |
[6] | 沈国辉, 杨烈, 钱振官, 等. 秀百宫: 暖季型草坪广谱性除草剂[J]. 草原与草坪, 2001, 21(3): 49-51. |
SHEN G H, YANG L, QIAN Z G, et al. Shibagen: a broad spectrum herbicide for weed control in warm season turfgrass[J]. Grassland and Turf, 2001, 21(3): 49-51. (in Chinese with English abstract) | |
[7] | 范文政. 啶嘧磺隆: 葡萄、柑橘、橄榄、甘蔗和非耕地的新型除草剂[J]. 世界农药, 2004, 26(1): 48-49. |
FAN W Z. Flazasulfuron:the new herbicides for grapes, citrus, olives, sugarcane, and non-agricultural fields.[J]. World Pesticide, 2004, 26(1): 48-49. (in Chinese) | |
[8] | ZHENG T, YU X X, SUN Y Z, et al. Expression of a cytochrome P450 gene from Bermuda grass Cynodon dactylon in soybean confers tolerance to multiple herbicides[J]. Plants, 2022, 11(7): 949. |
[9] | HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1): 205-218. |
[10] | HEALEY A, FURTADO A, COOPER T, et al. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species[J]. Plant Methods, 2014, 10(1): 21. |
[11] | LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654. |
[12] |
胡江博, 任正鹏, 丁翔, 等. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19.
DOI |
HU J B, REN Z P, DING X, et al. Application of herbicides in rice fields and research progress on herbicide-resistant rice varieties breeding[J]. China Rice, 2023, 29(4): 13-19. (in Chinese with English abstract)
DOI |
|
[13] | 刘庆虎, 陈国奇, 张玉华, 等. 不同叶龄千金子、稗和马唐对氰氟草酯和五氟磺草胺的敏感性[J]. 南京农业大学学报, 2016, 39(5): 771-776. |
LIU Q H, CHEN G Q, ZHANG Y H, et al. Sensitivities of Leptochloa chinensis, Echinochloa crusgalli and Digitaria sanguinalis at different leaf stages to cyhalofop-butyl and penoxsulam[J]. Journal of Nanjing Agricultural University, 2016, 39(5): 771-776. (in Chinese with English abstract) | |
[14] | DAMALAS C A, KOUTROUBAS S D. Herbicide-resistant barnyardgrass (Echinochloa crusgalli) in global rice production[J]. Weed Biology and Management, 2023, 23(1): 23-33. |
[15] |
KAWAHIGASHI H, HIROSE S, OHKAWA H, et al. Herbicide resistance of transgenic rice plants expressing human CYP1A1[J]. Biotechnology Advances, 2007, 25(1): 75-84.
PMID |
[16] | HAN H P, YU Q, BEFFA R, et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides a cross at least five modes of action[J]. The Plant Journal, 2021, 105(1): 79-92. |
[1] | 颜晶莹, 倪亮, 沈星宇, 李玉. 热处理对转基因秸秆中重组蛋白和重组DNA的降解作用[J]. 浙江农业学报, 2024, 36(9): 2079-2088. |
[2] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
[3] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
[4] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
[5] | 郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480. |
[6] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[7] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[8] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[9] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[10] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[11] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[12] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[13] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[14] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[15] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||