[1] |
曾颖, 莫锡乾. 我国罐头行业质量安全问题研究分析[J]. 现代食品, 2019, 25(10):128-130.
|
|
ZENG Y, MO X Q. Research and analysis on quality and safety of canning industry in China[J]. Modern Food, 2019, 25(10):128-130. (in Chinese with English abstract)
|
[2] |
仇凯, 邵懿, 王亚, 等. 罐头食品安全标准体系国内外对比分析研究[J]. 中国食品卫生杂志, 2021, 33(4):509-517.
|
|
QIU K, SHAO Y, WANG Y, et al. Comparative analysis and research on safety index of domestic and international canned food standard[J]. Chinese Journal of Food Hygiene, 2021, 33(4):509-517. (in Chinese with English abstract)
|
[3] |
陆新龙. 罐头的“打检” 技术[J]. 江苏食品与发酵, 1992(2):20-21, 16.
|
|
LU X L. The “inspection” technology for canned goods[J]. Jiangsu Food and Fermentation, 1992(2):20-21, 16. (in Chinese)
|
[4] |
干蜀毅, 朱武, 陈长琦, 等. 电涡流法检测罐头真空度的探头研制和仪器智能化[J]. 真空科学与技术, 2002, 22(5):326-328.
|
|
GAN S Y, ZHU W, CHEN C Q, et al. Non-destructive detection of low vacuum inside canned food and its sensors[J]. Chinese Journal of Vacuum Science and Technology, 2002, 22(5):326-328. (in Chinese with English abstract)
|
[5] |
李莉. 双探头电涡流传感器真空度无损检测系统研究[D]. 天津: 天津大学, 2007.
|
|
LI L. Research on non destructive testing system for vacuum degree of dual probe eddy current sensor[D]. Tianjin:Tianjin University, 2007. (in Chinese with English abstract)
|
[6] |
韩威, 周松斌, 刘忆森, 等. 基于麦克风阵列的罐装食品真空度在线检测[J]. 中国测试, 2019, 45(7):128-133.
|
|
HAN W, ZHOU S B, LIU Y S, et al. Online detection for vacuum of canned food based on microphone array[J]. China Measurement & Test, 2019, 45(7):128-133. (in Chinese with English abstract)
|
[7] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
|
[8] |
严春满, 王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索, 2021, 15(1):27-46.
|
|
YAN C M, WANG C. Development and application of convolutional neural network model[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1):27-46. (in Chinese with English abstract)
|
[9] |
EREN L, INCE T, KIRANYAZ S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J]. Journal of Signal Processing Systems, 2019, 91(2):179-189.
|
[10] |
YU Z J, LU Y Q, AN Q, et al. Real-time multiple gesture recognition:application of a lightweight individualized 1D CNN model to an edge computing system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30:990-998.
|
[11] |
JANA G C, SHARMA R, AGRAWAL A. A 1D-CNN-spectrogram based approach for seizure detection from EEG signal[J]. Procedia Computer Science, 2020, 167:403-412.
|
[12] |
KIRANYAZ S, INCE T, GABBOUJ M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Transactions on Bio-Medical Engineering, 2016, 63(3):664-675.
|
[13] |
李文. 神经网络中梯度消失的解决办法[J]. 电脑知识与技术, 2023, 19(10):19-21, 28.
|
|
LI W. Solution to vanishing gradients in neural networks[J]. Computer Knowledge and Technology, 2023, 19(10):19-21, 28. (in Chinese)
|
[14] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778.
|
[15] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:2261-2269.
|
[16] |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014.DOI:10.48550/arXiv.1412.3555.
|
[17] |
ZHANG J J, LIU Y H, YUAN H. Attention-based residual BiLSTM networks for human activity recognition[J]. IEEE Access, 2023, 11:94173-94187.
|
[18] |
JOHN A, CARDIFF B, JOHN D. A 1D-CNN based deep learning technique for sleep apnea detection in IoT sensors[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS). May 22-28, 2021, Daegu, Korea. IEEE, 2021:1-5.
|
[19] |
TANG S N, ZHU Y, YUAN S Q. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump[J]. Advanced Engineering Informatics, 2021, 50:101406.
|
[20] |
WEN L, GAO L, LI X Y, et al. Convolutional neural network with automatic learning rate scheduler for fault classification[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:3509912.
|