›› 2017, Vol. 29 ›› Issue (1): 168-175.DOI: 10.3969/j.issn.1004-1524.2017.01.23
• Reviews • Previous Articles
LI Dongyue1, 2, YUAN Wenxia1, 2, ZHENG Chao1, 2, WANG Xuming2, ZHOU Jie2, YAN Chengqi1, 2, *, CHEN Jianping1, 2, *
Received:
2016-04-22
Online:
2017-01-15
Published:
2017-02-23
[1] PACIFICI E, POLVERARI L, SABATINI S. Plant hormone cross-talk: the pivot of root growth[J]. Journal of Experimental Botany, 2015, 66(4):1113-1121. [2] 成晓越, 王栩鸣, 杨勇, 等. 一氧化氮参与疣粒野生稻对水稻白叶枯病的抗性[J]. 浙江农业学报, 2014, 26(1): 1-6. CHENG X Y, WANG X M, YANG Y, et al. Ntiric oxide involved in defense responses of Oryza meyeriana to rice bacterial blight[J]. Acta Agriculturae Zhejiangensis, 2014, 26(1): 1-6. (in Chinese with English abstract) [3] LUTOVA L A, DODUEVA I E, LEBEDEVA M A, et al. Transcription factors in developmental genetics and the evolution of higher plants[J]. Russian Journal of Genetics, 2015, 51(5): 449-466. [4] YANG S D, SEO P J, YOON H K, et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. Plant Cell, 2011, 23(6): 2155-2168. [5] WANG Z, TANG J, HU R, et al. Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns[J]. BMC Genomics, 2015, 16(1): 1-21. [6] 刘忠丽, 丛悦玺, 苟维超, 等. MYB类转录因子在植物细胞生长发育中的作用及其应用[J]. 浙江农业学报, 2012, 24(1):174-179. LIU Z L, CONG Y X, GOU W C, et al. The role and application of MYB-type transcription factors in the plant growth and development[J]. Acta Agriculturae Zhejiangensis, 2012, 24(1):174-179. (in Chinese with English abstract) [7] MASAKI S, HIRON0RI K, AKAGI, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance[J]. Molecular Plant Pathology, 2012, 13(1): 83-94. [8] FUJISAW, BABA T, NAGAMURA Y, et al. The map-based sequence of the rice genome[J]. Nature, 2005, 436(7052): 793-800. [9] INITIATIVE A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815. [10] VELASCO R, ZHARKIKH A, AFFOURTIT J, et al. The genome of the domesticated apple (Malus × domestica Borkh)[J]. Nature Genetics, 2010, 42(10): 833-839. [11] LEE S C, CHOI H W, HWANG I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses[J]. Planta, 2006, 224(5): 1209-1225. [12] SCHUMACHER M A, GOODMAN R H, BRENNAN R G. The structure of a CREB bZIP.somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding[J]. Journal of Biological Chemistry, 2000, 275(45): 35242-35247. [13] LIU L S, MICHAEL J, WHITE T, et al. Transcription factors and their genes in higher plants[J]. European Journal of Biochemistry, 1999, 262(2): 247-257. [14] CHARLES D, CATHERINE C, AMANDA R, et al. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1[J]. Plant Cell, 2003, 15(9): 2181-2191. [15] NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333-350. [16] MARC J, BERND W, WOLFGANG D, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3): 106-111. [17] CHOI H, HONG J, HA J, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723-1730. [18] KESARWANI M, YOO J X. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis[J]. Plant Physiology, 2007, 144(1): 336-346. [19] RUGNER A, FROHNMEYER H, NAKE C, et al. Isolation and characterization of four novel parsley proteins that interact with the transcriptional regulators CPRF1 and CPRF2[J]. Molecular Genetics & Genomics, 2001, 265(6): 964-976. [20] ANJA S, PETRA Z, ULRIKE Z. G-box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis[J]. Plant Physiology, 2010, 153(3): 1321-1331. [21] BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938-942. [22] MURILO S, ALVES S, AMANDA B, et al. Plant bZIP transcription factors responsive to pathogens: A review[J]. International Journal of Molecular Sciences, 2013, 14(4): 7815-7828. [23] YASUNARI F, MIKI F, RIE S, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470-3488. [24] ZOU M, GUAN Y, REN H, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6): 675-683. [25] LIU C, MAO B, OU S, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1-2): 19-36. [26] SHAH J. The salicylic acid loop in plant defense[J]. Current Opinion in Plant Biology, 2003, 6(4): 365-371. [27] STICHER L, MAUCH-MANI B, MÉTRAUX J P. Systemic acquired resistance[J]. Annual Review of Phytopathology,1997, 35: 235-270. [28] FU Z Q, DONG X. Systemic acquired resistance: turning local infection into global defense[J]. Annual Review of Plant Biology, 2013, 64(4): 839-863. [29] MOU Z L, FAN W H, DONG X N. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J]. Cell, 2003, 113(7): 935-944. [30] YASUOMI T S, STVVEN H, KAROLINA P M, et al. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins[J]. Science, 2008, 321(5891): 952-956. [31] ZHANG Y L, TESSARO M M, LI X. KnoCTKout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance[J]. Plant Cell, 2003, 15(11): 2647-2653. [32] FITZGERALD H A, CANLAS P E, CHERN M S, et al. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae[J]. Plant Journal, 2005, 43(3): 335-347. [33] ZHAO J, GUO R R, GUO C L, et al. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016,7:376. [34] ZHANG Y P, ZHOU J H, WANG L, et al. Mini review roles of the bZIP gene family in rice[J]. Genetics & Molecular Research, 2014, 13(2): 3025-3036. [35] CREELMAN R A, MULLET J E. Biosynthesis and Action of Jasmonates in Plants[J]. Annual Review of Plant Biology, 1997, 48: 355-381. [36] GYU I, LEE H, GREGG A. The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression[J]. Plant Journal for Cell & Molecular Biology, 2003, 33(3): 567-576. [37] HOWE G A. Jasmonates as signals in the wound response[J]. Journal of Plant Growth Regulation, 2004, 23(3): 223-237. [38] MARK Z, SYLVAIN L C, OLIVIER L, et al. Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid ethylene-induced defense responses[J]. The Plant Journal, 2010, 2010(61): 200-210. [39] IRIS A, PENNINCTKX A, BART P, et al. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis[J]. Plant Cell, 1998, 10(12): 2103-2113. [40] 沈爱华, 罗红兵, 邓志平, 等. 油菜素内酯信号传递在水稻中的研究进展[J]. 浙江农业学报, 2014, 26(5): 1399-1404. SHEN A H, LUO H B, DENG Z P, et al. Recent advances in brassinosteroid signaling in rice[J]. Acta Agriculturae Zhejiangensis, 2014, 26(5): 1399-1404. (in Chinese with English abstract) [41] KIM B, FUJIOKA S, KWON M, et al. Arabidopsis brassinosteroid-overproducing gulliver3-D/dwarf4-D mutants exhibit altered responses to jasmonic acid and pathogen[J]. Plant Cell Reports, 2013, 32(7): 1139-1149. [42] CHUNG Y, KWON S I, CHOE S. Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses[J]. Molecules & Cells, 2014, 37(8): 1165-1169. [43] ZANDER M, THUROW C, GATZ C. TGA Transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression[J]. Plant Physiology, 2014, 165(4): 1671-1683. [44] TANG N, ZHANG H, LI X, et al. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1755-1768. [45] AMIR H M, LEE Y, CHO J I, et al. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4-5): 557-566. [46] MUKHERJEE K, CHOUDHURY A R, GUPTA B, et al. An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice[J]. BMC Plant Biology, 2006, 104(25):1466-1470. [47] ZOU M, GUAN Y, REN H, et al. Characterization of alternative splicing products of bZIP transcription factors OsABI5[J]. Biochemical & Biophysical Research Communications, 2007, 360(2): 307-313. [48] ZOU M, GUAN Y, REN H, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6): 675-683. [49] JI Y H, JU C M, IN S L, et al. Phosphorylation-mediated regulation of a rice ABA responsive element binding factor[J]. Phytochemistry, 2011, 72(1): 27-36. [50] LIU C, WU Y, WANG X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2011, 235(6): 1157-1169. [51] LU G, GAO C, ZHENG X, et al. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615. [52] KESHISHIAN E A, RASHOTTE A M. Plant cytokinin signalling[J]. Essays in Biochemistry, 2015, 58: 13-27. [53] GUPTA S, RASHOTTE A M. Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant[J]. Plant Cell Reports, 2012, 31(5): 801-812. [54] TOMÁS W, ERIKA N, IREEN K L, et al. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco[J]. Plant Cell, 2010, 22(12): 3905-3920. [55] ARGYROS R D, MAEHEWS D E, Chiang Y H, et al. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development[J]. Plant Cell, 2008, 20(8): 2102-2118. [56] HWANG I, SHEEN J, MÜLLER B. Cytokinin signaling networks[J]. Annual Review of Plant Biology, 2012, 63: 353-380. [57] NGUYEN K H, HA C V, NISHIYAMA R, et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(11):3090-3095. [58] PELEG Z, BLUMWALD E. Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295. [59] ZWACTK J P, RASHOTTE M A. Interactions between cytokinin signalling and abiotic stress responses[J]. Journal of Experimental Botany, 2015, 66(16): 4863-4871. [60] CHOI J, HUH S U, KOJIMA M, et al. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis[J]. Developmental Cell, 2010, 19(2): 284-295. [61] MUHAMMAD N, THOMAS D. The role of auxin-cytokinin antagonism in plant pathogen interactions[J]. Plos Pathogens, 2012, 8(11): 1352-1362. [62] O'BRIEN J A, BENKOVA E. Cytokinin cross-talking during biotic and abiotic stress responses[J]. Frontiers in Plant Science, 2013, 4: 451. [63] DORON S I, DUDY B Z. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis[J]. Plant Cell, 2010, 22(11): 3560-3573. [64] WIND J J, ALESSIA P, BEREND S, et al. ABI4: versatile activator and repressor[J]. Trends in Plant Science, 2013, 18(3): 125-132. [65] HWANG I, SHEEN J. Two-component circuitry in Arabidopsis cytokinin signal transduction[J]. Nature, 2001, 413(6854): 383-389. [66] LI W, DEPING H, JUNNA H, et al. Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis[J]. Plos Genetics, 2011, 7(7): e1002172. [67] YITING S, SHOUWEI T, LINGYAN H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. Plant Cell, 2012, 24(6): 2578-2595. [68] RUZICTKA K, LJUNG K, VANNESTE S, et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution[J]. Plant Cell, 2007, 19(7): 2197-2212. [69] ZHU Z, AN F, FENG Y, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proceeding of National Academy of Sciences of the United States of America, 2011, 108(30): 12539-12544. [70] ZAREI A, KORBES A P, YOUNESSI P, et al. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis[J]. Plant Molecular Biology, 2011, 75(4-5): 321-331. [71] HYUN S C, FRANCOIS F, KIEBER J J. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell, 2003, 15(2): 545-559. [72] MOHR P G, CAHILL D M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato[J]. Functional & Integrative Genomics, 2007, 7(3): 181-191. [73] MICHIKO Y, ATSUSHI I, YUSUKE J, et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis[J]. Plant Cell, 2008, 20(6): 1678-1692. [74] MOSHER S, MOEDER M, NISHIMURA N, et al. The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner[J]. Plant Physiology, 2010, 152(4): 1901-1913. |
[1] | XU Li, CHEN Xiaojie, CAO Jingting, LIU Chuchu, DING Ting, JIANG Teng. Resistance mechanism of biocontrol strain DZSG23 against wheat scab [J]. , 2020, 32(11): 2001-2008. |
[2] | WANG Zhangjun, LIU Yan, ZHANG Shuangxi, LIU Fenglou, LI Qingfeng, ZHANG Xiaogang, LIU Shengxiang, JIA Biao. Identification on disease resistance and molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat [J]. , 2019, 31(5): 677-687. |
[3] | CHEN Yuansong, ZHU Xiaowei, GONG Xiangyu, MEI Zhicheng, ZHU Biao. Research advance of molecular marker-assisted selection in tomato disease resistance breeding in China [J]. , 2017, 29(8): 1415-1420. |
[4] | CHEN Ying, ZHENG Shenghan, KONG Linglin, ZHU Pengfei, WU Yun, GUO Qixin, CHEN Guohong, CHANG Guobin. Comparative analysis of BNK gene sequences in different chicken breeds [J]. , 2017, 29(10): 1648-1653. |
[5] | HUANG Xiao\|mei1, JIN Jian\|feng2, ZHANG Xue1, ZHU Si\|mei1, ZHU Ke\|ke1, ZHAO Luo\|peng1, JIANG Ming1,*. Cloning and characterization of a CC-NBS-LRR disease resistance gene of BoCNL1 from Brassica oleracea var. italica [J]. , 2016, 28(2): 259-. |
[6] | XIN Ya1, ZHANG Qing2, QIU Jie\|ren1, MA Hua\|sheng1, WANG Shu\|zhen1,RUAN Song\|lin1,*. Effects of brassinolide on quality and stress tolerance of summer strawberry seedlings#br# [J]. , 2015, 27(10): 1735-. |
[7] | WANG Xiao\|du1, TAN Zhong\|bin1, WANG Lu\|yan1, HE Ke1, LI Kai\|zhen2, PANG Qing\|yu2,*, ZHOU Qi1,*. Research progresses on the breeding of anti PRRS (porcine reproductive and respiratory syndrome) pigs [J]. , 2014, 26(5): 1394-. |
[8] | SHI Zhijun;ZHANG Huiqin;XIAO Jinping;YANG Luqiong;SUN Zhiwei;XIE Ming;*;MA Yuan. The resistance evaluation of different kiwifruit varieties to canker [J]. , 2014, 26(3): 0-752759. |
[9] | ZHOU Sheng\|mao;BAN Mei\|ling;SHANG Xiao\|hong;GUO Yuan\|yuan;WEN Jun\|li;LIANG Ren\|fan;HUANG Hao;CHEN Zhen\|dong;HUANG Ru\|kui;*. Progress in powdery mildew and molecular genetics of its resistance in cucurbits vegetable [J]. , 2013, 25(6): 0-1461. |
[10] | XYU Qing-qing;CHEN Hang-jun;GAO Hai-yan;*;SONG Li-li. Research progress on the effect of elicitors on controlling postharvest diseases of fruits and vegetables [J]. , 2013, 25(5): 0-1172. |
[11] | WANG Jiansheng;GU Hong\|hui*;YU Huifang;ZHAO Zhen;SHENG Xiaoguang. Network of regulation and metabolism of indole glucosinolate in plants [J]. , 2012, 24(4): 0-747. |
[12] | SHI Jian-yao;YANG Chang-deng . Analysis on major agronomic traits and development tendency of conventional japonica varieties in Zhejiang Province [J]. , 2012, 24(2): 0-201. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1576
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 741
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||