[1] 苑进, 胡敏, WANG K, 等. 基于高斯过程建模的物联网数据不确定性度量与预测[J]. 农业机械学报, 2015, 46(5):265-272. YUAN J, HU M, WANG K, et al.Uncertainty measurement and prediction of IOT data based on Gaussian process modeling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 265-272. (in Chinese with English abstract) [2] 张善文, 黄文准, 尤著宏. 基于物联网和深度卷积神经网络的冬枣病害识别方法[J]. 浙江农业学报, 2017, 29(11):1868-1874. ZHANG S W, HUANG W Z, YOU Z H.Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network[J]. Acta Agriculturae Zhejiangensis, 2017, 29(11): 1868-1874. (in Chinese with English abstract) [3] 李林, 王竹, 呼延正勇, 等. 田间数据传输同步策略与中间件研究[J]. 农业机械学报, 2016, 47(1): 279-288. LI L,WANG Z, HUYAN Z Y, et al.Research on field data transmission synchronization strategy and middleware[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 279-288. (in Chinese with English abstract) [4] 段青玲, 肖晓琰, 刘怡然,等. 基于改进型支持度函数的畜禽养殖物联网数据融合方法[J]. 农业工程学报, 2017, 33(z1): 239-245. DUAN Q L, XIAO X Y, LIU Y R, et al.Data fusion method of livestock and poultry breeding internet of things based on improved support function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(z1): 239-245. (in Chinese with English abstract) [5] 陈燕俐, 张乾, 许建, 等. 无线传感器网络多应用场景下的安全数据融合方案[J]. 计算机科学, 2017, 44(9): 162-167. CHEN Y L, ZHANG Q, XU J, et al.Secure data aggregation scheme for multiple applications in wireless sensor networks[J]. Computer Science, 2017, 44(9): 162-167. (in Chinese with English abstract) [6] 朱艺华, 徐骥, 田贤忠, 等. 无线传感器网络应用简单Reed-Solomon编码的低能耗和低时延可靠数据收集方案[J]. 计算机学报, 2015, 38(10):2106-2124. ZHU Y H, XU J, TIAN X Z, et al.Energy-efficient and low-delay reliable data gathering scheme applying simple reed-solomon code for wireless sensor network[J]. Chinese Journal of Computers. 2015, 38(10): 2106-2124. (in Chinese with English abstract) [7] DIAS G M, BELLALTA B, OECHSNER S.A survey about prediction-based data reduction in wireless sensor networks[J]. ACM Computing Surveys, 2016, 49(3): 58. [8] DIAS G M, BELLALTA B, OECHSNER S.On the importance and feasibility of forecasting data in sensors[J]. arXiv, 2016: 1604.01275. [9] RAZZAQUE M A, BLEAKLEY C, DOBSON S.Compression in wireless sensor networks: a survey and comparative evaluation[J]. ACM Transactions on Sensor Networks, 2013, 10(1): 5. [10] ADEROHUNMU F A, PACI G, BRUNELLI D, et al.An application-specific forecasting algorithm for extending wsn lifetime[C]// IEEE International Conference on Distributed Computing in Sensor Systems, 2013: 374-381. [11] LI G, WANG Y.Automatic ARIMA modeling-based data aggregation scheme in wireless sensor networks[J]. EURASIP Journal on Wireless Communications and Networking, 2013 (1): 85. [12] 宋欣, 王翠荣. 基于线性回归的无线传感器网络分布式数据采集优化策略[J]. 计算机学报, 2012, 35(3):568-580. SONG X, WANG C R.Linear regression based distribution data gathering optimization strategy for wireless sensor networks[J]. Chinese Journal of Computers. 2012, 35(3): 568-580. (in Chinese with English abstract) [13] 刘永华, 沈明霞, 熊迎军, 等. 基于两级预测的温室WSN系统数据传输方法[J]. 农业机械学报, 2014, 45(12): 329-334. LIU Y H, SHEN M X, XIONG Y J, et al.Data transmission of WSN system in greenhouse based on two-level prediction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 329-334. (in Chinese with English abstract) [14] RAZA U, CAMERRA A, MURPHY A L, et al.Practical data prediction for real-world wireless sensor networks[J]. IEEE Transactions on Knowledge & Data Engineering, 2015, 27(8): 2231-2244. [15] RAZA U, BOGLIOLO A, FRESCHI V, et al.A two-prong approach to energy-efficient WSNs: wake-up receivers plus dedicated, model-based sensing[J]. Ad Hoc Networks, 2016, 45: 1-12. [16] 张瑞瑞, 杜尚丰, 陈立平, 等. 基于分段线性回归的传感器网络数据压缩传输方法研究[J]. 传感技术学报, 2015, 28(4): 531-536. ZHANG R R, DU S F, CHEN L P, et al.Data compression method with piece-wise linear regression in WSN[J]. Chinese Journal of Sensors and Actuators, 2015, 28(4): 531-536. (in Chinese with English abstract) [17] TIAN Y, XU Y P, WANG G. Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin[J]. Science of the Total Environment, 2018, 622/623: 710-720. [18] MHAMMEDI Z, HELLICAR A, RAHMAN A, et al.Recurrent neural networks for one day ahead prediction of stream flow[C]// Workshop on Time Series Analytics and Applications, 2016: 25-31. [19] 信桂新, 杨朝现, 杨庆媛, 等. 用熵权法和改进TOPSIS模型评价高标准基本农田建设后效应[J]. 农业工程学报, 2017, 33(1): 238-249. XIN G X,YANG C X,YANG Q Y, et al.Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model[J].Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 238-249. (in Chinese with English abstract) [20] RAZA U, KULKARNI P, SOORIYABANDARA M.Low power wide area networks: an overview[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 855-873. |