Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (3): 404-412.DOI: 10.3969/j.issn.1004-1524.2021.03.04
• Animal Science • Previous Articles Next Articles
JIANG Xingcan1,2,3, LI Bing1,2,3, YANG Min1,2,3, ZHANG Jiyu1,2,3,*()
Received:
2020-01-25
Online:
2021-04-02
Published:
2021-03-25
Contact:
ZHANG Jiyu
CLC Number:
JIANG Xingcan, LI Bing, YANG Min, ZHANG Jiyu. Optimization of preparation technology and stability evaluation of sarafloxacin/β-cyclodextrin inclusion complex by response surface method[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 404-412.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.03.04
水平 Level | SAR与β-CD摩尔比 Molar ratio of SAR and β-CD | θ/℃ | t/h |
---|---|---|---|
1 | 1∶1 | 40 | 3 |
2 | 1∶2 | 50 | 4 |
Table 1 Orthogonal test factor and levels of preparation technology
水平 Level | SAR与β-CD摩尔比 Molar ratio of SAR and β-CD | θ/℃ | t/h |
---|---|---|---|
1 | 1∶1 | 40 | 3 |
2 | 1∶2 | 50 | 4 |
水平 Level | 进气温度 Intake air temperature/℃ | 泵速 Pump speed/(r·min-1) |
---|---|---|
1 | 135 | 6.0 |
2 | 150 | 6.3 |
3 | 165 | 6.6 |
Table 2 Orthogonal test factor and levels of spray drying process
水平 Level | 进气温度 Intake air temperature/℃ | 泵速 Pump speed/(r·min-1) |
---|---|---|
1 | 135 | 6.0 |
2 | 150 | 6.3 |
3 | 165 | 6.6 |
方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 4083.69 | 9 | 453.74 | 19.46 | 0.0004 |
A | 1128.13 | 1 | 1128.13 | 48.37 | 0.0002 |
B | 338.00 | 1 | 338.00 | 14.49 | 0.0067 |
C | 528.13 | 1 | 528.13 | 22.65 | 0.0021 |
AB | 36.00 | 1 | 36.00 | 1.54 | 0.2541 |
AC | 156.25 | 1 | 156.25 | 6.70 | 0.0360 |
BC | 16.00 | 1 | 16.00 | 0.69 | 0.4348 |
A2 | 671.12 | 1 | 671.12 | 28.78 | 0.0010 |
B2 | 295.33 | 1 | 295.33 | 12.66 | 0.0092 |
C2 | 725.33 | 1 | 725.33 | 31.10 | 0.0008 |
残差 Residual | 163.25 | 7 | 23.32 | ||
失拟项 Lack of fit | 163.25 | 3 | 54.42 | ||
纯误差 Pure error | 0.000 | 4 | 0.000 |
Table 3 Variance analysis of regression model
方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 4083.69 | 9 | 453.74 | 19.46 | 0.0004 |
A | 1128.13 | 1 | 1128.13 | 48.37 | 0.0002 |
B | 338.00 | 1 | 338.00 | 14.49 | 0.0067 |
C | 528.13 | 1 | 528.13 | 22.65 | 0.0021 |
AB | 36.00 | 1 | 36.00 | 1.54 | 0.2541 |
AC | 156.25 | 1 | 156.25 | 6.70 | 0.0360 |
BC | 16.00 | 1 | 16.00 | 0.69 | 0.4348 |
A2 | 671.12 | 1 | 671.12 | 28.78 | 0.0010 |
B2 | 295.33 | 1 | 295.33 | 12.66 | 0.0092 |
C2 | 725.33 | 1 | 725.33 | 31.10 | 0.0008 |
残差 Residual | 163.25 | 7 | 23.32 | ||
失拟项 Lack of fit | 163.25 | 3 | 54.42 | ||
纯误差 Pure error | 0.000 | 4 | 0.000 |
方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 21397.99 | 5 | 4279.60 | 17.84 | 0.0007 |
D | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
E | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
DE | 2500.00 | 1 | 2500.00 | 10.42 | 0.0145 |
D2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
E2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
残差 Residual | 1678.93 | 7 | 239.85 | ||
失拟项 Lack of fit | 1678.93 | 3 | 559.64 | ||
纯误差 Pure error | 0.000 | 4 | 0.000 |
Table 4 Variance analysis of regression model
方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 21397.99 | 5 | 4279.60 | 17.84 | 0.0007 |
D | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
E | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
DE | 2500.00 | 1 | 2500.00 | 10.42 | 0.0145 |
D2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
E2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
残差 Residual | 1678.93 | 7 | 239.85 | ||
失拟项 Lack of fit | 1678.93 | 3 | 559.64 | ||
纯误差 Pure error | 0.000 | 4 | 0.000 |
初始质量 Initial weight/g | 3 h后质量 Weight after 3 h/g | 3 h后质量损失 Weight loss after 3 h/g | 4 h后质量损失 Weight loss after 4 h/g | 4.5 h后质量损失 Weight loss after 4.5 h/g |
---|---|---|---|---|
1.1165 | 1.1151 | 0.0014 | 0.0006 | 0.0002 |
0.9058 | 0.9043 | 0.0015 | 0.0005 | 0.0002 |
0.9675 | 0.9660 | 0.0015 | 0.0005 | 0 |
1.2946 | 1.2932 | 0.0014 | 0.0006 | 0 |
1.1341 | 1.1327 | 0.0014 | 0.0007 | 0.0002 |
1.0125 | 1.0111 | 0.0014 | 0.0005 | 0.0001 |
Table 5 Results of dry weight loss experiment results
初始质量 Initial weight/g | 3 h后质量 Weight after 3 h/g | 3 h后质量损失 Weight loss after 3 h/g | 4 h后质量损失 Weight loss after 4 h/g | 4.5 h后质量损失 Weight loss after 4.5 h/g |
---|---|---|---|---|
1.1165 | 1.1151 | 0.0014 | 0.0006 | 0.0002 |
0.9058 | 0.9043 | 0.0015 | 0.0005 | 0.0002 |
0.9675 | 0.9660 | 0.0015 | 0.0005 | 0 |
1.2946 | 1.2932 | 0.0014 | 0.0006 | 0 |
1.1341 | 1.1327 | 0.0014 | 0.0007 | 0.0002 |
1.0125 | 1.0111 | 0.0014 | 0.0005 | 0.0001 |
批次 Number | 载药量 Drug loading/% | 溶解度 Solubility/(mg·mL-1) |
---|---|---|
1 | 90.17 | 15.08 |
2 | 90.48 | 15.08 |
3 | 90.34 | 13.92 |
Table 6 Drug loading and solubility of SAR/β-CD
批次 Number | 载药量 Drug loading/% | 溶解度 Solubility/(mg·mL-1) |
---|---|---|
1 | 90.17 | 15.08 |
2 | 90.48 | 15.08 |
3 | 90.34 | 13.92 |
保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
---|---|---|---|---|---|
5 | 1 | 100.35 | <0.5 | <1.0 | <0.5 |
2 | 99.21 | <0.5 | <1.0 | <0.5 | |
3 | 100.16 | <0.5 | <1.0 | <0.5 | |
10 | 1 | 96.11 | <0.5 | <1.0 | <0.5 |
2 | 99.76 | <0.5 | <1.0 | <0.5 | |
3 | 100.91 | <0.5 | <1.0 | <0.5 |
Table 7 High temperature exposure test of SAR/β-CD
保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
---|---|---|---|---|---|
5 | 1 | 100.35 | <0.5 | <1.0 | <0.5 |
2 | 99.21 | <0.5 | <1.0 | <0.5 | |
3 | 100.16 | <0.5 | <1.0 | <0.5 | |
10 | 1 | 96.11 | <0.5 | <1.0 | <0.5 |
2 | 99.76 | <0.5 | <1.0 | <0.5 | |
3 | 100.91 | <0.5 | <1.0 | <0.5 |
保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
---|---|---|---|---|---|
5 | 1 | 96.43 | <0.5 | <1.0 | <0.5 |
2 | 98.05 | <0.5 | <1.0 | <0.5 | |
3 | 97.21 | <0.5 | <1.0 | <0.5 | |
10 | 1 | 95.61 | <0.5 | <1.0 | <0.5 |
2 | 95.33 | <0.5 | <1.0 | <0.5 | |
3 | 96.02 | <0.5 | <1.0 | <0.5 |
Table 8 Strong light exposure test of SAR/β-CD
保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
---|---|---|---|---|---|
5 | 1 | 96.43 | <0.5 | <1.0 | <0.5 |
2 | 98.05 | <0.5 | <1.0 | <0.5 | |
3 | 97.21 | <0.5 | <1.0 | <0.5 | |
10 | 1 | 95.61 | <0.5 | <1.0 | <0.5 |
2 | 95.33 | <0.5 | <1.0 | <0.5 | |
3 | 96.02 | <0.5 | <1.0 | <0.5 |
保存时间 Storage time/d | 批次 Number | 吸湿后质量增加比例 Hygroscopic weight gain | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
---|---|---|---|---|---|---|
5 | 1 | <5% | 96.54 | <0.5 | <1.0 | <0.5 |
2 | <5% | 100.03 | <0.5 | <1.0 | <0.5 | |
3 | <5% | 98.65 | <0.5 | <1.0 | <0.5 | |
10 | 1 | <5% | 95.39 | <0.5 | <1.0 | <0.5 |
2 | <5% | 100.10 | <0.5 | <1.0 | <0.5 | |
3 | <5% | 98.05 | <0.5 | <1.0 | <0.5 |
Table 9 High humidity exposure test of SAR/β-CD
保存时间 Storage time/d | 批次 Number | 吸湿后质量增加比例 Hygroscopic weight gain | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
---|---|---|---|---|---|---|
5 | 1 | <5% | 96.54 | <0.5 | <1.0 | <0.5 |
2 | <5% | 100.03 | <0.5 | <1.0 | <0.5 | |
3 | <5% | 98.65 | <0.5 | <1.0 | <0.5 | |
10 | 1 | <5% | 95.39 | <0.5 | <1.0 | <0.5 |
2 | <5% | 100.10 | <0.5 | <1.0 | <0.5 | |
3 | <5% | 98.05 | <0.5 | <1.0 | <0.5 |
[1] |
ANADON A, SUAREZ F H, MARTINEZ M A , et al. Plasma disposition and tissue depletion of difloxacin and its metabolite sarafloxacin in the food producing animals, chickens for fattening[J]. Food and Chemical Toxicology, 2011,49(2):441-449.
DOI URL |
[2] | EZELARAB H A A, ABBAS S H, HASSAN H A , et al. Recent updates of fluoroquinolones as antibacterial agents[J]. Archiv der Pharmazie, 2018,351(9):64. |
[3] |
CHEN W, YANG L J, MA S X , et al. Crassicauline A/β-cyclodextrin host-guest system: preparation, characterization, inclusion mode, solubilization and stability[J]. Carbohydrate Polymers, 2011,84(4):1321-1328.
DOI URL |
[4] |
XIAO C F, LI K, HUANG R , et al. Investigation of inclusion complex of epothilone A with cyclodextrins[J]. Carbohydrate Polymers, 2014,102(11):297-305.
DOI URL |
[5] |
NIIZAWA I, ESPINACO B Y, ZORRILLO S , et al. Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads[J]. International Journal of Biological Macromolecules, 2019,121(10):601-608.
DOI URL |
[6] |
RUDKE R R, HELENO S A, FERNANDES I P , et al. Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology[J]. LWT-Food Science and Technology, 2019,103(4):228-237.
DOI URL |
[7] |
MARINOPUOLOU A, KARAGEORGIOU V, PAPASTERGIADIS E , et al. Production of spray-dried starch molecular inclusion complexes on an industrial scale[J]. Food and Bioproducts Processing, 2019,116(5):186-195.
DOI URL |
[8] |
NAIR A, KHUNT D, MISRA M . Application of quality by design for optimization of spray drying process used in drying of risperidone nanosuspension[J]. Powder Technology, 2019,342(9):156-165.
DOI URL |
[9] |
LU W D, THOMAS R, JUKKA R , et al. Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying[J]. International Journal of Pharmaceutics, 2019,565(6):1-8.
DOI URL |
[10] |
YANG L J, CHANG Q, ZHOU S Y , et al. Host-guest interaction between brazilin and hydroxypropyl-β-cyclodextrin: Preparation, inclusion mode, molecular modelling and characterization[J]. Dyes and Pigments, 2018,150(3):193-201.
DOI URL |
[11] | VARGHESE E, BHOWMIK A, JAGGI S , et al. On the generation of cost effective response surface designs[J]. Computers and Electronics in Agriculture, 2017,133(2):37-45. |
[12] | LOH G O K, YAN Y T F, PEH K . Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin[J]. Asian Journal of Pharmaceutical Sciences, 2016,11(4):536-546. |
[13] |
PATEL M, HIRLEKAR R . Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water soluble drug[J]. Asian Journal of Pharmaceutical Sciences, 2019,14(1):104-115.
URL PMID |
[14] | SHERJE A P, PATEL F, MURAHARI M , et al. Study on effect of L-arginine on solubility and dissolution of zaltoprofen: Preparation and characterization of binary and ternary cyclodextrin inclusion complexes[J]. Chemical Physics Letters, 2018,694(2):120-128. |
[15] | Yang L J, XIA S, MA S X , et al. Host-guest system of hesperetin and β-cyclodextrin or its derivatives: Preparation, characterization, inclusion mode, solubilization and stability[J]. Materials Science and Engineering: C, 2016,59(2):1016-1024. |
[16] | Yang L J, WANG S H, ZHOU S Y , et al. Supramolecular system of podophyllotoxin and hydroxypropyl-β-cyclodextrin: Characterization, inclusion mode, docking calculation, solubilization, stability and cytotoxic activity[J]. Materials Science and Engineering: C, 2017,76(7):1136-1145. |
[17] | MOUSAVI M, HESHMATI A, GARMAKHANY A D , et al. Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology[J]. LWT-Food Science and Technology, 2019,102(3):80-88. |
[18] | LOUGHRILL E, THOMPSOM S, OWUSU S , et al. Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing[J]. Food Chemistry, 2019,286(6):368-375. |
[19] | ZHOU S Y, MA S X, CHENG H L , et al. Host-guest interaction between pinocembrin and cyclodextrins: Characterization, solubilization and stability[J]. Journal of Molecular Structure, 2014,1058(1):181-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||