Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (7): 1192-1198.DOI: 10.3969/j.issn.1004-1524.2021.07.05
• Horticultural Science • Previous Articles Next Articles
TAO Peng(), ZHAO Yanting, YUE Zhichen, LEI Juanli, LI Biyuan*(
)
Received:
2020-06-28
Online:
2021-07-25
Published:
2021-08-06
Contact:
LI Biyuan
CLC Number:
TAO Peng, ZHAO Yanting, YUE Zhichen, LEI Juanli, LI Biyuan. Analysis of mRNA transport of BcSVP of Chinese flowering cabbage in heterograft[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1192-1198.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.07.05
Fig.1 Sequence alignment of BcSVP and BoSVP from Chinese flowering cabbage and head cabbage Start codon and stop codon are marked by underline and box.
基因名称 Gene name | 物种 Species | 同源基因定位 Homologous gene location | 等电点 Isoelectric point | 相对分子质量 Molecular weight/ku |
---|---|---|---|---|
BcSVP | 菜心Chinese flowering cabbage | Bra030228(Chr04:10192172-10194736) | 5.87 | 27.24 |
BoSVP | 结球甘蓝head cabbage | Bo4g149800(Chr04:40723422-40726294) | 5.87 | 27.29 |
Table 1 Homologous gene and gene location of the SVP genes from Chinese flowering cabbage and head cabbage and isoelectric points and molecular weight of the corresponding coding proteins
基因名称 Gene name | 物种 Species | 同源基因定位 Homologous gene location | 等电点 Isoelectric point | 相对分子质量 Molecular weight/ku |
---|---|---|---|---|
BcSVP | 菜心Chinese flowering cabbage | Bra030228(Chr04:10192172-10194736) | 5.87 | 27.24 |
BoSVP | 结球甘蓝head cabbage | Bo4g149800(Chr04:40723422-40726294) | 5.87 | 27.29 |
Fig.2 Sequence alignment of 3’UTR of BcSVP and BoSVP from Chinese flowering cabbage and head cabbage Stop codon was marked by box. The retrieval sequence GF and CF were marked by black background and gray background respectively.
Fig.3 The three potential BcSVP reads of Chinese cabbage identified from T01 and T02 library of shoot apexes of head cabbage from heterograft by searching with CR sequence
名称 Name | 文库 Library | 位置 Location | 长度 Length/nt | 3’UTR中的核苷酸/nt Nucleotides on 3'UTR/nt | 与BcSVP差异核苷酸 Differential nucleotides with BcSVP | 与BoSVP的差异核苷酸 Differential nucleotides with BoSVP |
---|---|---|---|---|---|---|
Read1 | T01 | 34740498 | 150 | 149 | 0 | 27 |
Read2 | T01 | 76178478 | 150 | 59 | 1 | 5 |
Read3 | T02 | 59545522 | 150 | 71 | 3 | 7 |
Table 2 Related information of three potential BcSVP reads of Chinese cabbage identified from T01 and T02 library of shoot apexes of head cabbage from heterograft by searching with CR sequence
名称 Name | 文库 Library | 位置 Location | 长度 Length/nt | 3’UTR中的核苷酸/nt Nucleotides on 3'UTR/nt | 与BcSVP差异核苷酸 Differential nucleotides with BcSVP | 与BoSVP的差异核苷酸 Differential nucleotides with BoSVP |
---|---|---|---|---|---|---|
Read1 | T01 | 34740498 | 150 | 149 | 0 | 27 |
Read2 | T01 | 76178478 | 150 | 59 | 1 | 5 |
Read3 | T02 | 59545522 | 150 | 71 | 3 | 7 |
Fig.4 Sequence alignment of long-transport reads, BoSVP and BcSVP from head cabbage and Chinese flowering cabbage The retrieval sequence CF and CR were marked by black background.
序列名称 Sequence name | 序列 Sequence (5’-3’) | T01 | T02 | T03 | T04 | T05 |
---|---|---|---|---|---|---|
CF | AGAAGTTCATGGAGTGAGGAGATGCTCTGTAGTAACAAGTG | 0 | 0 | 0 | 0 | 44 |
CR | CACTTGTTACTACAGAGCATCTCCTCACTCCATGAACTTCT | 2 | 1 | 0 | 0 | 88 |
GF | AGAAGTTGTGGAGTGAGGAGATACTCTGTGGTAACAAGTG | 103 | 80 | 86 | 46 | 0 |
GR | CACTTGTTACCACAGAGTATCTCCTCACTCCACAACTTCT | 200 | 185 | 103 | 113 | 0 |
Table 3 The retrieval number in different libraries by searching with interspecific differential sequence
序列名称 Sequence name | 序列 Sequence (5’-3’) | T01 | T02 | T03 | T04 | T05 |
---|---|---|---|---|---|---|
CF | AGAAGTTCATGGAGTGAGGAGATGCTCTGTAGTAACAAGTG | 0 | 0 | 0 | 0 | 44 |
CR | CACTTGTTACTACAGAGCATCTCCTCACTCCATGAACTTCT | 2 | 1 | 0 | 0 | 88 |
GF | AGAAGTTGTGGAGTGAGGAGATACTCTGTGGTAACAAGTG | 103 | 80 | 86 | 46 | 0 |
GR | CACTTGTTACCACAGAGTATCTCCTCACTCCACAACTTCT | 200 | 185 | 103 | 113 | 0 |
[1] | 曹玥华, 魏灵珠, 沈碧薇, 等. 砧木对新郁葡萄生长和果实品质的影响[J]. 浙江农业学报, 2019, 31(6):908-914. |
CAO Y H, WEI L Z, SHEN B W, et al. Effects of rootstocks on growth and fruit quality of Xinyu grape[J]. Acta Agriculturae Zhejiangensis, 2019, 31(6):908-914.(in Chinese with English abstract) | |
[2] | 黄科文, 李克强, 刘继, 等. 不同砧穗组合对豆瓣菜扦插苗生理特性及硒积累的影响[J]. 浙江农业学报, 2020, 32(3):447-454. |
HUANG K W, LI K Q, LIU J, et al. Effects of different rootstock combinations on physiological characteristics and selenium accumulation of Nasturtium officinale cuttings[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3):447-454.(in Chinese with English abstract) | |
[3] | 王幼群. 植物嫁接系统及其在植物生命科学研究中的应用[J]. 科学通报, 2011, 56(30):2478-2485. |
WANG Y Q. Plant grafting system and its application in study of plant life science[J]. Chinese Science Bulletin, 2011 56(30):2478-2485. (in Chinese) | |
[4] |
HUANG N C, YU T S. The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking[J]. The Plant Journal, 2009, 59(6):921-929.
DOI URL |
[5] |
KANEHIRA A, YAMADA K, IWAYA T, et al. Apple phloem cells contain some mRNAs transported over long distances[J]. Tree Genetics Genomes, 2010, 6(5):635-642.
DOI URL |
[6] | YANG H W, YU T S. Arabidopsis floral regulators FVE and AGL24 are phloem-mobile RNAs[J]. Botanical Studies, 2010, 51(1):17-26. |
[7] |
YU H, XU Y, TAN E L, et al. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals[J]. PNAS, 2002, 99(25):16336-16341.
DOI URL |
[8] |
MICHAELS S D, DITTA G, GUSTAFSON-BROWN C, et al. AGL24 Acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. The Plant Journal, 2003, 33(5):867-874.
DOI URL |
[9] |
ANDRÉS F, PORRI A, TORTI S, et al. SHORT VEGETATIVE PHASE reduces gibberellin biosynjournal at the Arabidopsis shoot apex to regulate the floral transition[J]. Proceedings of the National Academy Sciences of the United States of America, 2014, 111(26):E2760-E2769.
DOI URL |
[10] |
GREGIS V, SESSA A, COLOMBO L, et al. AGAMOUS-LIKE24andSHORT VEGETATIVE PHASEdetermine floral meristem identity in Arabidopsis[J]. The Plant Journal, 2008, 56(6):891-902.
DOI URL |
[11] |
GREGIS V, SESSA A, DORCA-FORNELL C, et al. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes[J]. The Plant Journal, 2009, 60(4):626-637.
DOI URL |
[12] | 陶鹏, 李必元, 岳智臣, 等. 结球甘蓝与菜心正反嫁接比较试验[J]. 浙江农业科学, 2017, 58(4):595-596. |
TAO P, LI B Y, YUE Z C, et al. Comparison of reciprocal grafting of head cabbage and Chinese flowering cabbage[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(4):595-596. (in Chinese) | |
[13] |
THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24):4876-4882.
DOI URL |
[14] |
LU K J, HUANG N C, LIU Y S, et al. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation[J]. RNA Biology, 2012, 9(5):653-662.
DOI URL |
[15] | 陶鹏, 赵彦婷, 钟新民, 等. 菜心BrAGL24基因mRNA在嫁接体中的长距离运输分析[J]. 核农学报, 2019, 33(5):880-887. |
TAO P, ZHAO Y T, ZHONG X M, et al. Analysis of mRNA long-distance transport of Chinese flowering cabbage BrAGL24 in heterograft[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5):880-887.(in Chinese with English abstract) | |
[16] |
ZHANG W N, THIEME C J, KOLLWIG G, et al. tRNA-related sequences trigger systemic mRNA transport in plants[J]. The Plant Cell, 2016, 28(6):1237-1249.
DOI URL |
[17] |
BANERJEE A K, LIN T, HANNAPEL D J. Untranslated regions of a mobile transcript mediate RNA metabolism[J]. Plant Physiology, 2009, 151(4):1831-1843.
DOI URL |
[18] |
CHO S K, SHARMA P, BUTLER N M, et al. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA[J]. Journal of Experimental Botany, 2015, 66(21):6835-6847.
DOI URL |
[1] | HUANG Kewen, LI Keqiang, LIU Ji, SUI Liyun, LIU Lei, WANG Ting, ZHENG Yangxia, LIN Lijin, LIAO Ming'an. Effects of different rootstock combinations on physiological characteristics and selenium accumulation of Nasturtium officinale cuttings [J]. , 2020, 32(3): 447-454. |
[2] | WANG Bingliang, HAI Rui, JIN Bingsheng, JIANG Jianhong, SHI Xingren, LIN Yuquan, YE Hongxia. Effect of grafting methods on grafting working efficiency, seedling growth and fruit quality of melon (Cucumis melo L.) [J]. , 2020, 32(10): 1809-1815. |
[3] | YING Quansheng, HE Yong, WANG Yinger, CAO Tingting, GU Binquan, WANG Yuhong. Effects of grafting with different rootstocks on watermelon fruit quality [J]. , 2017, 29(4): 590-596. |
[4] | LIU Xin\|hua1,2, CAO Chun\|xin1, LIU Lin1, ZHU Pu1, ZHOU Qin1, JIANG Hai\|dong2,*. Effects of different rootstocks on plant growth and fruit quality of watermelon [J]. , 2015, 27(6): 966-. |
[5] | HAO Ting*,DING Xiao\|tao*,YU Ji\|zhu**,ZHANG Hong\|mei,JIN Hai\|jun. Effect of towel gourd as rootstock on thermal tolerance of cucumber seedlings [J]. , 2015, 27(3): 365-. |
[6] | WANG Han—rong;*;RU Shui—jiang;WANG Lian—ping;FANG Li;REN Haj—ying;FENG Zhong-min . Control of tomato bacterial wilt with grafting [J]. , 2009, 21(3): 0-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||