[1] |
曹玥华, 魏灵珠, 沈碧薇, 等. 砧木对新郁葡萄生长和果实品质的影响[J]. 浙江农业学报, 2019, 31(6):908-914.
|
|
CAO Y H, WEI L Z, SHEN B W, et al. Effects of rootstocks on growth and fruit quality of Xinyu grape[J]. Acta Agriculturae Zhejiangensis, 2019, 31(6):908-914.(in Chinese with English abstract)
|
[2] |
黄科文, 李克强, 刘继, 等. 不同砧穗组合对豆瓣菜扦插苗生理特性及硒积累的影响[J]. 浙江农业学报, 2020, 32(3):447-454.
|
|
HUANG K W, LI K Q, LIU J, et al. Effects of different rootstock combinations on physiological characteristics and selenium accumulation of Nasturtium officinale cuttings[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3):447-454.(in Chinese with English abstract)
|
[3] |
王幼群. 植物嫁接系统及其在植物生命科学研究中的应用[J]. 科学通报, 2011, 56(30):2478-2485.
|
|
WANG Y Q. Plant grafting system and its application in study of plant life science[J]. Chinese Science Bulletin, 2011 56(30):2478-2485. (in Chinese)
|
[4] |
HUANG N C, YU T S. The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking[J]. The Plant Journal, 2009, 59(6):921-929.
DOI
URL
|
[5] |
KANEHIRA A, YAMADA K, IWAYA T, et al. Apple phloem cells contain some mRNAs transported over long distances[J]. Tree Genetics Genomes, 2010, 6(5):635-642.
DOI
URL
|
[6] |
YANG H W, YU T S. Arabidopsis floral regulators FVE and AGL24 are phloem-mobile RNAs[J]. Botanical Studies, 2010, 51(1):17-26.
|
[7] |
YU H, XU Y, TAN E L, et al. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals[J]. PNAS, 2002, 99(25):16336-16341.
DOI
URL
|
[8] |
MICHAELS S D, DITTA G, GUSTAFSON-BROWN C, et al. AGL24 Acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. The Plant Journal, 2003, 33(5):867-874.
DOI
URL
|
[9] |
ANDRÉS F, PORRI A, TORTI S, et al. SHORT VEGETATIVE PHASE reduces gibberellin biosynjournal at the Arabidopsis shoot apex to regulate the floral transition[J]. Proceedings of the National Academy Sciences of the United States of America, 2014, 111(26):E2760-E2769.
DOI
URL
|
[10] |
GREGIS V, SESSA A, COLOMBO L, et al. AGAMOUS-LIKE24andSHORT VEGETATIVE PHASEdetermine floral meristem identity in Arabidopsis[J]. The Plant Journal, 2008, 56(6):891-902.
DOI
URL
|
[11] |
GREGIS V, SESSA A, DORCA-FORNELL C, et al. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes[J]. The Plant Journal, 2009, 60(4):626-637.
DOI
URL
|
[12] |
陶鹏, 李必元, 岳智臣, 等. 结球甘蓝与菜心正反嫁接比较试验[J]. 浙江农业科学, 2017, 58(4):595-596.
|
|
TAO P, LI B Y, YUE Z C, et al. Comparison of reciprocal grafting of head cabbage and Chinese flowering cabbage[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(4):595-596. (in Chinese)
|
[13] |
THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24):4876-4882.
DOI
URL
|
[14] |
LU K J, HUANG N C, LIU Y S, et al. Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation[J]. RNA Biology, 2012, 9(5):653-662.
DOI
URL
|
[15] |
陶鹏, 赵彦婷, 钟新民, 等. 菜心BrAGL24基因mRNA在嫁接体中的长距离运输分析[J]. 核农学报, 2019, 33(5):880-887.
|
|
TAO P, ZHAO Y T, ZHONG X M, et al. Analysis of mRNA long-distance transport of Chinese flowering cabbage BrAGL24 in heterograft[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5):880-887.(in Chinese with English abstract)
|
[16] |
ZHANG W N, THIEME C J, KOLLWIG G, et al. tRNA-related sequences trigger systemic mRNA transport in plants[J]. The Plant Cell, 2016, 28(6):1237-1249.
DOI
URL
|
[17] |
BANERJEE A K, LIN T, HANNAPEL D J. Untranslated regions of a mobile transcript mediate RNA metabolism[J]. Plant Physiology, 2009, 151(4):1831-1843.
DOI
URL
|
[18] |
CHO S K, SHARMA P, BUTLER N M, et al. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA[J]. Journal of Experimental Botany, 2015, 66(21):6835-6847.
DOI
URL
|