Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1770-1778.DOI: 10.3969/j.issn.1004-1524.2021.09.21
• Review • Previous Articles Next Articles
SUN Liping1,2(), BAI Linlin2,3, GAN Yating1, CHEN Xueyun2,3, WANG Liu2, ZHANG Yiming1,*(
), HE Kaiyu2,*(
), XU Xiahong2
Received:
2020-08-10
Online:
2021-09-25
Published:
2021-10-09
Contact:
ZHANG Yiming,HE Kaiyu
CLC Number:
SUN Liping, BAI Linlin, GAN Yating, CHEN Xueyun, WANG Liu, ZHANG Yiming, HE Kaiyu, XU Xiahong. Research progress of rapid detection of pesticides and veterinary drugs residues and heavy metal ions based on DNA G-quadruplex[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1770-1778.
Fig.1 G-tetrad and G-quadruplexes A, G-tetrad structure; B, Monomolecular folded G-quadruplex (Antiparallel structure); C, Bimolecular folded G-quadruplex (Antiparallel structure); D, Tetramolecular folded G-quadruplex (Parallel structure).
Fig.3 Rapid detection of veterinary drug residues in agricultural products based on G-quadruplex sensors A, Scheme of tetracycline rapid detection based on DNA G-quadruplex and triple helix[39]; B, Scheme of G-quadruplex based SERS sensing platform for the rapid detection of malachite green[40].
Fig.4 Rapid detection of pesticide residues in agricultural products based on G-quadruplex sensors A, The rapid detection of ethanolamine based on G-quadruplex formed by ethanolamine aptamer[42]; B, The label-free and enzyme-free fluorescent biosensor for the rapid detection of ICP[43]; C, Fluorescence biosensor for the detection of acetamiprid based on DNA triple helix molecular switch and G-quadruplex[44].
Fig.5 Rapid detection of heavy metal ions in agricultural products based on G-quadruplex sensors A, Scheme of the label-free Hg2+ sensor based on G-quadruplex[45]; B, DNA G-quadruplex-hemin amplified signal for the sensitive electrochemical detection of Pb2+[46]; C, DNA G-quadruplex based Ag+ biosensor[47].
[1] |
MOHAN C, KUMAR Y, MADAN J, et al. Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography[J]. Environmental Monitoring and Assessment, 2010, 165(1/2/3/4):573-576.
DOI URL |
[2] |
KUMARAVEL A, MURUGANANTHAN M, MANGALAM R, et al. A novel, biocompatible and electrocatalytic stearic acid/nanosilver modified glassy carbon electrode for the sensing of paraoxon pesticide in food samples and commercial formulations[J]. Food Chemistry, 2020, 323:126814.
DOI URL |
[3] |
YU C C, HAO D Y, CHU Q, et al. A one adsorbent QuEChERS method coupled with LC-MS/MS for simultaneous determination of 10 organophosphorus pesticide residues in tea[J]. Food Chemistry, 2020, 321:126657.
DOI URL |
[4] |
ZHANG B H, PAN X P, VENNE L, et al. Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection[J]. Talanta, 2008, 75(4):1055-1060.
DOI URL |
[5] | HUSKOVA R, KIRCHNER M, MATISOVA E. Matrix effects and their elimination in gas chromatographic analysis of pesticide residues in food[J]. Chemicke Listy, 2007, 101(12):1020-1027. |
[6] |
FENG C, XU Q, QIU X L, et al. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-Orbitrap[J]. Food Chemistry, 2020, 320(2):126576.
DOI URL |
[7] | RAZI-ASRAMI M, GHASEMI J B, AMIRI N, et al. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction[J]. Environmental Monitoring & Assessment, 2017, 189(4):196. |
[8] |
LI N L, LI R H, SONG Y S, et al. Caramelized carbonaceous shell-coated γ-Fe2O3 as a magnetic solid-phase extraction sorbent for LC-MS/MS analysis of triphenylmethane dyes[J]. Microchimica Acta, 2020, 187(7):371.
DOI URL |
[9] |
SOUZA J P, CERVEIRA C, MICELI T M, et al. Evaluation of sample preparation methods for cereal digestion for subsequent As, Cd, Hg and Pb determination by AAS-based techniques[J]. Food Chemistry, 2020, 321:126715.
DOI URL |
[10] | 丁冬梅, 张赞, 王记鲁, 等. 自动控温石墨消解仪溶样-原子荧光法测定土壤中重金属[J]. 分析试验室, 2016, 35(9):1108-1110. |
DING D M, ZHANG Z, WANG J L, et al. Automatic temperature controlled graphite digestion apparatus-AFS for determining heavy metals in soil[J]. Chinese Journal of Analysis Laboratory, 2016, 35(9):1108-1110.(in Chinese with English abstract) | |
[11] |
VOGL J, HEUMANN K G. Determination of heavy metal complexes with humic substances by HPLC/ICP-MS coupling using on-line isotope dilution technique[J]. Fresenius’ Journal of Analytical Chemistry, 1997, 359(4/5):438-441.
DOI URL |
[12] | 吴显庸, 袁园园, 刘战民, 等. 鸟嘌呤四链体DNAzyme在微生物、生物小分子和核酸检测中的研究进展[J]. 食品安全质量检测学报, 2020, 11(3):688-693. |
WU X Y, YUAN Y Y, LIU Z M, et al. Research progress of G-quadruplex DNAzyme in detection of microorganism, biomolecule and nucleic acids[J]. Journal of Food Safety & Quality, 2020, 11(3):688-693.(in Chinese with English abstract) | |
[13] |
MOHANTY J, BAROOAH N, DHAMODHARAN V, et al. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA[J]. Journal of the American Chemical Society, 2013, 135(1):367-376.
DOI URL |
[14] |
SEN D, GILBERT W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis[J]. Nature, 1988, 334(6180):364-366.
DOI URL |
[15] |
BOCHMAN M L, PAESCHKE K, ZAKIAN V A. DNA secondary structures: stability and function of G-quadruplex structures[J]. Nature Reviews. Genetics, 2012, 13(11):770-780.
DOI URL |
[16] |
IDA J, CHAN S, GLÖKLER J, et al. G-quadruplexes as an alternative recognition element in disease-related target sensing[J]. Molecules, 2019, 24(6):1079.
DOI URL |
[17] |
LIM K W, AMRANE S, BOUAZIZ S, et al. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers[J]. Journal of the American Chemical Society, 2009, 131(12):4301-4309.
DOI URL |
[18] |
PARKINSON G N, LEE M P H, NEIDLE S. Crystal structure of parallel quadruplexes from human telomeric DNA[J]. Nature, 2002, 417(6891):876-880.
DOI URL |
[19] |
LANE A N. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules[J]. Biochimie, 2012, 94(2):277-286.
DOI URL |
[20] |
KARSISIOTIS A I, HESSARI N M, NOVELLINO E, et al. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism[J]. Angewandte Chemie International Edition, 2011, 50(45):10645-10648.
DOI URL |
[21] |
ZHENG G H, LU X J, OLSON W K. Web 3DNA: a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures[J]. Nucleic Acids Research, 2009, 37(Web Server issue):W240-W246.
DOI URL |
[22] | 段娜娜, 王娜, 杨薇, 等. 利用对G-四链体环部的构型调节进行传感器的设计[J]. 分析化学, 2014, 42(10):1414-1420. |
DUAN N N, WANG N, YANG W, et al. Sensor design based on structure adjustment in loops of G-quadruplex[J]. Chinese Journal of Analytical Chemistry, 2014, 42(10):1414-1420.(in Chinese with English abstract)
DOI URL |
|
[23] |
LIU F, DING A L, ZHENG J S, et al. A label-free aptasensor for ochratoxin a detection based on the structure switch of aptamer[J]. Sensors, 2018, 18(6):1769.
DOI URL |
[24] |
CHENG X H, LIU X J, BING T, et al. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening[J]. Biochemistry, 2009, 48(33):7817-7823.
DOI URL |
[25] |
TRAVASCIO P, LI Y F, SEN D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex[J]. Chemistry & Biology, 1998, 5(9):505-517.
DOI URL |
[26] |
GUO Y H, CHEN J L, CHENG M P, et al. A thermophilic tetramolecular G-quadruplex/hemin DNAzyme[J]. Angewandte Chemie, 2017, 129(52):16863-16867.
DOI URL |
[27] |
ZHU L, LI C, ZHU Z, et al. In vitro selection of highly efficient G-quadruplex-based DNAzymes[J]. Analytical Chemistry, 2012, 84(19):8383-8390.
DOI URL |
[28] |
KONG D M, YANG W, WU J, et al. Structure-function study of peroxidase-like G-quadruplex-hemin complexes[J]. The Analyst, 2010, 135(2):321-326.
DOI URL |
[29] |
NAKAYAMA S, SINTIM H O. Colorimetric split G-quadruplex probes for nucleic acid sensing: improving reconstituted DNAzyme’s catalytic efficiency via probe remodeling[J]. Journal of the American Chemical Society, 2009, 131(29):10320-10333.
DOI URL |
[30] |
LI W, LI Y, LIU Z L, et al. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity[J]. Nucleic Acids Research, 2016, 44(15):7373-7384.
DOI URL |
[31] |
HE H Z, CHAN D S H, LEUNG C H, et al. G-quadruplexes for luminescent sensing and logic gates[J]. Nucleic Acids Research, 2013, 41(8):4345-4359.
DOI URL |
[32] |
BHASIKUTTAN A C, MOHANTY J. Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors[J]. Chemical Communications (Cambridge, England), 2015, 51(36):7581-7597.
DOI URL |
[33] |
LI T, WANG E K, DONG S J. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium Ion[J]. Analytical Chemistry, 2010, 82(18):7576-7580.
DOI URL |
[34] |
LIU Z L, LI W, NIE Z, et al. Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity[J]. Chemical Communications (Cambridge, England), 2014, 50(52):6875-6878.
DOI URL |
[35] |
LU Y J, DENG Q, HOU J Q, et al. Molecular engineering of thiazole orange dye: change of fluorescent signaling from universal to specific upon binding with nucleic acids in bioassay[J]. ACS Chemical Biology, 2016, 11(4):1019-1029.
DOI URL |
[36] |
XU Y Y, ZHOU W J, ZHOU M, et al. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin[J]. Biosensors and Bioelectronics, 2015, 64:306-310.
DOI URL |
[37] | 张素格, 孙红霞, 唐亚林. DNA G-四链体识别探针研究进展[J]. 化学通报, 2016, 79(5):387-394. |
ZHANG S G, SUN H X, TANG Y L. Research progress in the probes targeting DNA G-quadruplex[J]. Chemistry, 2016, 79(5):387-394.(in Chinese with English abstract) | |
[38] |
YU G L, BRADLEY J D, ATTARDI L D, et al. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs[J]. Nature, 1990, 344(6262):126-132.
DOI URL |
[39] |
CHEN T X, NING F, LIU H S, et al. Label-free fluorescent strategy for sensitive detection of tetracycline based on triple-helix molecular switch and G-quadruplex[J]. Chinese Chemical Letters, 2017, 28(7):1380-1384.
DOI URL |
[40] | QIU S Y, ZHAO F S, ZENASNI O, et al. Nanoporous gold disks functionalized with stabilized G-quadruplex moieties for sensing small molecules[J]. ACS Applied Materials & Interfaces, 2016, 8(44):29968-29976. |
[41] |
LUAN Q, XI Y, GAN N, et al. A facile colorimetric aptamer assay for small molecule detection in food based on a magnetic single-stranded DNA binding protein-linked composite probe[J]. Sensors and Actuators B: Chemical, 2017, 239:979-987.
DOI URL |
[42] |
BAYRAÇ A T, ACAR Y. Label-free G-quadruplex aptamer and Thioflavin-T based turn-off fluorescent detection of ethanolamine[J]. Dyes and Pigments, 2020, 172:107788.
DOI URL |
[43] |
LI X T, TANG X M, CHEN X J, et al. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on MWCNTs and G-quadruplex[J]. Talanta, 2018, 188:232-237.
DOI URL |
[44] |
TANG X M, LI X T, MA D L, et al. A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid[J]. Talanta, 2018, 189:599-605.
DOI URL |
[45] | 王香玉. G-四链体探针用于重金属和端粒酶的非标记荧光检测[D]. 长沙:湖南大学, 2014. |
WANG X Y. G-Quadruplex probes for the label-free fluorescent detection of heavy metals and telomerase[D]. Changsha: Hunan University, 2014. (in Chinese with English abstract) | |
[46] |
JI R Y, NIU W C, CHEN S, et al. Target-inspired Pb2+-dependent DNAzyme for ultrasensitive electrochemical sensor based on MoS2-AuPt nanocomposites and hemin/G-quadruplex DNAzyme as signal amplifier[J]. Biosensors & Bioelectronics, 2019, 144:111560.
DOI URL |
[47] |
LU Y J, MA N, LI Y J, et al. Styryl quinolinium/G-quadruplex complex for dual-channel fluorescent sensing of Ag+and cysteine[J]. Sensors and Actuators B: Chemical, 2012, 173:295-299.
DOI URL |
[48] | 郭亚辉, 许丽君, 申小强, 等. 基于G-四链体的锌离子免标记生物传感器[C]// 中国化学会.中国化学会第29届学术年会摘要集——第04分会:纳米生物传感新方法. 中国化学会: 2014: 293. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1335
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 937
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||