Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (12): 2313-2319.DOI: 10.3969/j.issn.1004-1524.2021.12.11
• Horticultural Science • Previous Articles Next Articles
HU Tianhua(), WEI Qingzhen, WANG Jinglei, WANG Wuhong, HU Haijiao, YAN Yaqin, BAO Chonglai*(
)
Received:
2020-06-09
Online:
2021-12-25
Published:
2022-01-10
Contact:
BAO Chonglai
CLC Number:
HU Tianhua, WEI Qingzhen, WANG Jinglei, WANG Wuhong, HU Haijiao, YAN Yaqin, BAO Chonglai. Identification of quantitative trait loci controlling radish root index by QTL-seq[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2313-2319.
性状 Traits | 肉质根长度 Root length | 肉质根横径 Root diameter |
---|---|---|
肉质根横径Root diameter | -0.007 | 1 |
根形指数Root shape index | 0.883 | -0.448 |
Table 1 The phenotypic correlation coefficient
性状 Traits | 肉质根长度 Root length | 肉质根横径 Root diameter |
---|---|---|
肉质根横径Root diameter | -0.007 | 1 |
根形指数Root shape index | 0.883 | -0.448 |
样本名称 Sample name | 过滤数据量 Clean_Base | Q30/% | GC/% | 比对率 Mapped/% | 测序深度 Average depth | 覆盖度 Cov_ratio_1X/% |
---|---|---|---|---|---|---|
LLYH | 11 441 633 036 | 93.57 | 37.40 | 95.91 | 17 | 82.79 |
CLA | 10 383 258 026 | 92.89 | 37.45 | 96.64 | 15 | 82.82 |
S-pool | 16 119 471 526 | 92.59 | 37.50 | 96.02 | 23 | 90.52 |
L-pool | 15 436 711 660 | 93.19 | 37.41 | 96.66 | 22 | 90.34 |
Table 2 Statistics of sequencing data of parents and extreme pools
样本名称 Sample name | 过滤数据量 Clean_Base | Q30/% | GC/% | 比对率 Mapped/% | 测序深度 Average depth | 覆盖度 Cov_ratio_1X/% |
---|---|---|---|---|---|---|
LLYH | 11 441 633 036 | 93.57 | 37.40 | 95.91 | 17 | 82.79 |
CLA | 10 383 258 026 | 92.89 | 37.45 | 96.64 | 15 | 82.82 |
S-pool | 16 119 471 526 | 92.59 | 37.50 | 96.02 | 23 | 90.52 |
L-pool | 15 436 711 660 | 93.19 | 37.41 | 96.66 | 22 | 90.34 |
Fig. 6 The △(SNP-index) distribution of the QTL loci of root shape index detected by QTL-Seq Abscissa represents chromosomes, colored dot represents calculated Δ(SNPS-index) value, the black line for fitting after Δ(SNPS-index) value. The red, blue and green lines y represent threshold lines with confidence of 0.99, 0.95 and 0.90, respectively.
数量性状 位点 QTL | 染色体 Chromosome | 起始位置 Start | 结束位置 End | 区间 Interval/Mb |
---|---|---|---|---|
rs2.1 | R2 | 21.66 | 26.03 | 4.37 |
rs2.2 | R2 | 30.79 | 36.56 | 5.77 |
rs4.1 | R4 | 39.04 | 40.43 | 1.39 |
rs6.1 | R6 | 11.53 | 13.40 | 1.87 |
Table 3 Summary of QTLs detected for root shape index
数量性状 位点 QTL | 染色体 Chromosome | 起始位置 Start | 结束位置 End | 区间 Interval/Mb |
---|---|---|---|---|
rs2.1 | R2 | 21.66 | 26.03 | 4.37 |
rs2.2 | R2 | 30.79 | 36.56 | 5.77 |
rs4.1 | R4 | 39.04 | 40.43 | 1.39 |
rs6.1 | R6 | 11.53 | 13.40 | 1.87 |
[1] | 余如刚. 萝卜肉质直根膨大相关基因与microRNAs鉴定[D]. 南京: 南京农业大学, 2015. |
YU R G. Identification of functional genes and microRNAs relative to taproot thickening in radish (Raphanus sativus L.)[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[2] |
MITSUI Y, SHIMOMURA M, KOMATSU K, et al. The radish genome and comprehensive gene expression profile of tuberous root formation and development[J]. Scientific Reports, 2015, 5: 10835.
DOI URL |
[3] | 孙玉燕, 李锡香. 蔬菜变态根茎发育的分子机理研究进展[J]. 中国农业科学, 2015, 48(6): 1162-1176. |
SUN Y Y, LI X X. A review on molecular mechanism of the modified roots or stems development in vegetables[J]. Scientia Agricultura Sinica, 2015, 48(6): 1162-1176.(in Chinese with English abstract) | |
[4] | 荆赞革. 萝卜肉质根根重性状遗传标记分析与膨胀素基因家族的克隆[D]. 南京: 南京农业大学, 2009. |
JING Z G. Genetic marker analysis of taproot weight and expansin gene family cloning in radish (Raphanus sativus L.)[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese with English abstract) | |
[5] |
TSURO M, SUWABE K, KUBO N K, et al. Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L.[J]. Breeding Science, 2008, 58(1): 55-61.
DOI URL |
[6] |
HASHIDA T, NAKATSUJI R, BUDAHN H, et al. Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits[J]. Breeding Science, 2013, 63(2): 218-226.
DOI URL |
[7] |
WANG S F, WANG X F, HE Q W, et al. Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish[J]. Plant Cell Reports, 2012, 31(8): 1437-1447.
DOI URL |
[8] | YU R G, WANG J, XU L, et al. Transcriptome profiling of taproot reveals complex regulatory networks during taproot thickening in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7: 1210. |
[9] | 杜雪玲, 马媛媛, 程洋洋, 等. 萝卜根径发育候选基因的初步筛选[J]. 西北农业学报, 2019, 28(4): 567-577. |
DU X L, MA Y Y, CHENG Y Y, et al. Screening for candidate gene involved in taproot diameter development of radish[J]. Acta AgriculturaeBoreali-Occidentalis Sinica, 2019, 28(4): 567-577.(in Chinese with English abstract) | |
[10] |
TAKAGI H, ABE A, YOSHIDA K, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. The Plant Journal, 2013, 74(1): 174-183.
DOI URL |
[11] |
ILLA-BERENGUER E, HOUTEN J, HUANG Z J, et al. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq[J]. Theoretical and Applied Genetics, 2015, 128(7): 1329-1342.
DOI URL |
[12] |
WEI Q Z, FU W Y, WANG Y Z, et al. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis[J]. Scientific Reports, 2016, 6: 27496.
DOI URL |
[13] | 王豪, 张健, 王加峰, 等. 基于QTL-seq的水稻粒质量QTL定位及候选基因分析[J]. 华北农学报, 2020, 35(2): 18-28. |
WANG H, ZHANG J, WANG J F, et al. QTL mapping and candidate gene analysis of rice grain weight based on QTL-seq[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2): 18-28.(in Chinese with English abstract) | |
[14] | 魏凯, 刘晓燕, 曹雪, 等. 利用QTL-seq定位番茄果实质量QTL[J]. 园艺学报, 2020, 47(3): 571-580. |
WEI K, LIU X Y, CAO X, et al. Identification of quantitative trait loci controlling tomato fruit weight by QTL-seq[J]. Acta Horticulturae Sinica, 2020, 47(3): 571-580.(in Chinese with English abstract) | |
[15] |
LIU T J, WANG J L, WU C H, et al. Combined QTL-seq and traditional linkage analysis to identify candidate genes for purple skin of radish fleshy taproots[J]. Frontiers in Genetics, 2019, 10: 808.
DOI URL |
[16] |
WANG Q B, WANG Y P, SUN H H, et al. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish[J]. Journal of Experimental Botany, 2020, 71(9): 2537-2550.
DOI URL |
[17] |
KITASHIBA H, LI F, HIRAKAWA H, et al. Draft sequences of the radish (Raphanus sativus L.) genome[J]. DNA Research, 2014, 21(5): 481-490.
DOI URL |
[18] |
MOGHE G D, HUFNAGEL D E, TANG H B, et al. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species[J]. The Plant Cell, 2014, 26(5): 1925-1937.
DOI URL |
[19] | ZHANG X H, YUE Z, MEI S Y, et al. A de novo genome of a Chinese radish cultivar[J]. Horticultural Plant Journal, 2015, 1(3): 155-164. |
[20] | SHIRASAWA K, HIRAKAWA H, FUKINO N, et al. Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named ‘Sakurajima Daikon' possessing giant root[J]. DNA Research, 2020, 27(2): dsaa010. |
[21] | 李锡香, 沈嫡. 萝卜种质资源描述规范[M]. 北京: 中国农业出版社, 2008. |
[22] | SAMUOLIENĖ G, SIRTAUTAS R, BRAZAITYTĖ A, et al. The impact of red and blue light-emitting diode illumination on radish physiological indices[J]. Central European Journal of Biology, 2011, 6(5): 821-828. |
[23] | CHOI E Y, SEO T C, LEE S G, et al. Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature[J]. Horticulture, Environment, and Biotechnology, 2011, 52(4): 376-386. |
[24] |
JANG G, LEE J H, RASTOGI K, et al. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.)[J]. Journal of Experimental Botany, 2015, 66(15): 4607-4619.
DOI URL |
[25] | VAUGHN M W, HARRINGTON G N, BUSH D R. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2002, 99(16): 10876-10880. |
[26] |
ZAKI H E M, YOKOI S, TAKAHATA Y. Identification of genes related to root shape in radish (Raphanus sativus) using suppression subtractive hybridization[J]. Breeding Science, 2010, 60(2): 130-138.
DOI URL |
[27] |
MUVVA C, TEWARI L, ARUNA K, et al. In silico identification of miRNAs and their targets from the expressed sequence tags of Raphanus sativus[J]. Bioinformation, 2012, 8(2): 98-103.
DOI URL |
[28] | 姜立娜. 萝卜肉质根形成性状的分子生物学基础[D]. 南京: 南京农业大学, 2012. |
JIANG L N. Molecular characterization of taproot formation traits in radish(Raphanus sativus L.)[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[29] |
MONFORTE A J, DIAZ A, CAÑO-DELGADO A, et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon[J]. Journal of Experimental Botany, 2014, 65(16): 4625-4637.
DOI URL |
[30] | 高鹏, 刘识, 崔浩楠, 等. 甜瓜基因组学、功能基因定位及基因工程育种研究进展[J]. 园艺学报, 2020, 47(9): 1827-1844. |
GAO P, LIU S, CUI H N, et al. Research progress of melon genomics, functional gene mapping and genetic engineering[J]. Acta Horticulturae Sinica, 2020, 47(9): 1827-1844.(in Chinese with English abstract) | |
[31] | 刘兴旺, 翟许玲, 张亚琦, 等. 黄瓜果实形态建成的遗传及分子基础研究进展[J]. 园艺学报, 2020, 47(9): 1793-1809. |
LIU X W, ZHAI X L, ZHANG Y Q, et al. A review on genetic and molecular biology of fruit morphogenesis in cucumber[J]. Acta Horticulturae Sinica, 2020, 47(9): 1793-1809.(in Chinese with English abstract) |
[1] | ZHANG Kexin, DAI Dongyang, WANG Haonan, YU Mingyue, SHENG Yunyan. Genetic and QTL analysis of seed traits in melon (Cucumis melon L.) [J]. , 2018, 30(9): 1496-1503. |
[2] | HU Liping, ZHOU Guoxing, LIU Guangmin, WANG Yaqin, HE Hongju. Effects of combined modifier on nutritional quality and lead accumulation of radish under lead stress [J]. , 2018, 30(4): 592-599. |
[3] | ZHENG Yayan, YANG Ying, LU Shengmin, CAO Yaqun. Screening, identification and quality analysis of fermented strains for white radish beverage [J]. , 2017, 29(3): 506-514. |
[4] | HU Jing\|feng1,YANG Hong\|li1,XU Xue\|zhong1,HE Jiang\|ming1,*,ZHAO Ying2 . Study on the CMS germplasm innovation of clubroot resistance in Brassica#br# [J]. , 2015, 27(8): 1394-. |
[5] | CHEN Hong\|cheng1,2, ZHANG Xiao\|yu3,2, JIAO Cong\|cong4,2, HUANG Ji\|Xiang2, NI Xi\|yuan2, ZHAO Jian\|yi2,*. QTL mapping for glucosinolate content in seeds and its potential utilization in rapeseed breeding [J]. , 2014, 26(6): 1412-. |
[6] | WU Wenwen;LU Bing;*. Genetic architecture of quantitative traits based on Shanyou63 recombinant inbred lines [J]. , 2014, 26(2): 0-268273. |
[7] | JIA Qiao-jun;WANG Jun-mei;ZHU Jing-huan;HUA Wei;SHANG Yi;YANG Jian-ming*. Review on hot-spot QTL associated with yield of barley [J]. , 2013, 25(3): 0-449. |
[8] | CHENG Shuang;SUN Zhong-yong;HUANG Ji-xiang;CAO Ming-fu;ZHAO Jian-yi;*. Mapping QTL for oil content and yield-related traits in Brassica napus L.using immortalized F2 population [J]. , 2013, 25(2): 0-212. |
[9] | YANG Li-juan;ZHOU Sheng-jun;MAO Wei-hai;YUAN Yi;CHEN Xin-juan;*. Composition and content of glucosinolates in leaves and edible roots of radish [J]. , 2010, 22(3): 0-316. |
[10] | YUE Gao—hong;MEI Han—Wei;PAN Bin—rong;LOU Jue;LI Ming-shou;LUO Li—jun;*. Mapping of QTLs affecting stigma exsertion rate of Huhan 1B as a CMS maintainer of upland hybrid rice [J]. , 2009, 21(3): 0-245. |
[11] | HUANG Ji-xiang;WANG Yi-long;NI Xi-yuan;REN Li-ping;CAO Ming-fu;ZHAO Jian-yi;*. Genetic analysis of ten agronomic traits using doubled haploid population in Brassica napus L. [J]. , 2009, 21(05): 0-423. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 686
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||