Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (12): 2446-2456.DOI: 10.3969/j.issn.1004-1524.2021.12.25
• Review • Previous Articles
ZHANG Weimei1(), ZHANG Guwen2, FENG Zhijuan2, LIU Na2, WANG Bin2, BU Yuanpeng2,*(
)
Received:
2020-10-27
Online:
2021-12-25
Published:
2022-01-10
Contact:
BU Yuanpeng
CLC Number:
ZHANG Weimei, ZHANG Guwen, FENG Zhijuan, LIU Na, WANG Bin, BU Yuanpeng. Research progress on genetic and regulatory mechanisms of sucrose in vegetable soybean seeds[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2446-2456.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.12.25
连锁群 (染色体) LG(Chr.) | 标记 Marker | 贡献率 R2/% | 参考文献 Reference | 连锁群 (染色体) LG(Chr.) | 标记 Marker | 贡献率 R2/% | 参考文献 Reference |
---|---|---|---|---|---|---|---|
A1(5) | sg:laSU-A487V | 8.10 | [ | H(12) | satt442 | 8.29 | [ |
A1(5) | sg:laSU-T169H | 7.00 | [ | J(16) | sct 065 | 8.28 | [ |
A2(8) | sg:laSU-A458-1H | 7.70 | [ | A1(5) | ss245668753 | 46.00 | [ |
A2(8) | sg:laSU-A136V | 8.70 | [ | K(9) | ss246796276 | 10.00 | [ |
A2(8) | sg:laSU-A486I | 8.40 | [ | J(16) | ss249186914 | 8.00 | [ |
A2(8) | sg:laSU-T153-1I | 7.60 | [ | M(7) | AX-90425348-AX-90424508 | 17.18 | [ |
I(20) | sg:laSU-A144H | 12.40 | [ | A2(8) | AX-90497857-AX-90396735 | 15.94 | [ |
I(20) | sg:laSU-K227-1 | 11.40 | [ | L(19) | AX-90508115-AX-90509468 | 36.87 | [ |
I(20) | sg:VT-NBS37 | 11.30 | [ | A1(5) | BARC1.01Gm05_38495217 | - | [ |
F(13) | sg:laSU-A186I | 9.60 | [ | G(18) | BARC1.01Gm18_59597832 | - | [ |
F(13) | OO20850 | 6.10 | [ | E(15) | BARC1.01Gm15_12181005 | - | [ |
L (19) | sg:laSU-A23I | 9.70 | [ | C2(6) | Rsm1 | 60.76 | [ |
L (19) | sg:laSU-B164D | 9.60 | [ | B2(14) | satt070 | 4.50 | [ |
L (19) | sg:laSU-B162V | 7.00 | [ | G(18) | satt427 | 4.50 | [ |
L (19) | OB41600 | 8.60 | [ | D1a(1) | satt531 | 2.50 | [ |
M(7) | BARC-SC514 | 7.30 | [ | D1b(2) | sat_069 | 6.40 | [ |
E(15) | sg:laSU-A963H | 6.90 | [ | A2(8) | satt538 | 2.80 | [ |
B1(11) | satt197 | 3.61 | [ | D1b(2) | satt141 | 6.10 | [ |
D1b(2) | satt546 | 6.43 | [ | H(12) | satt353 | 6.40 | [ |
L(19) | satt278-satt523 | 21.39 | [ | K(9) | satt001 | 4.50 | [ |
A1(5) | satt382 | 5.20 | [ |
Table 1 Reported loci/markers related to sucrose content in soybean seeds
连锁群 (染色体) LG(Chr.) | 标记 Marker | 贡献率 R2/% | 参考文献 Reference | 连锁群 (染色体) LG(Chr.) | 标记 Marker | 贡献率 R2/% | 参考文献 Reference |
---|---|---|---|---|---|---|---|
A1(5) | sg:laSU-A487V | 8.10 | [ | H(12) | satt442 | 8.29 | [ |
A1(5) | sg:laSU-T169H | 7.00 | [ | J(16) | sct 065 | 8.28 | [ |
A2(8) | sg:laSU-A458-1H | 7.70 | [ | A1(5) | ss245668753 | 46.00 | [ |
A2(8) | sg:laSU-A136V | 8.70 | [ | K(9) | ss246796276 | 10.00 | [ |
A2(8) | sg:laSU-A486I | 8.40 | [ | J(16) | ss249186914 | 8.00 | [ |
A2(8) | sg:laSU-T153-1I | 7.60 | [ | M(7) | AX-90425348-AX-90424508 | 17.18 | [ |
I(20) | sg:laSU-A144H | 12.40 | [ | A2(8) | AX-90497857-AX-90396735 | 15.94 | [ |
I(20) | sg:laSU-K227-1 | 11.40 | [ | L(19) | AX-90508115-AX-90509468 | 36.87 | [ |
I(20) | sg:VT-NBS37 | 11.30 | [ | A1(5) | BARC1.01Gm05_38495217 | - | [ |
F(13) | sg:laSU-A186I | 9.60 | [ | G(18) | BARC1.01Gm18_59597832 | - | [ |
F(13) | OO20850 | 6.10 | [ | E(15) | BARC1.01Gm15_12181005 | - | [ |
L (19) | sg:laSU-A23I | 9.70 | [ | C2(6) | Rsm1 | 60.76 | [ |
L (19) | sg:laSU-B164D | 9.60 | [ | B2(14) | satt070 | 4.50 | [ |
L (19) | sg:laSU-B162V | 7.00 | [ | G(18) | satt427 | 4.50 | [ |
L (19) | OB41600 | 8.60 | [ | D1a(1) | satt531 | 2.50 | [ |
M(7) | BARC-SC514 | 7.30 | [ | D1b(2) | sat_069 | 6.40 | [ |
E(15) | sg:laSU-A963H | 6.90 | [ | A2(8) | satt538 | 2.80 | [ |
B1(11) | satt197 | 3.61 | [ | D1b(2) | satt141 | 6.10 | [ |
D1b(2) | satt546 | 6.43 | [ | H(12) | satt353 | 6.40 | [ |
L(19) | satt278-satt523 | 21.39 | [ | K(9) | satt001 | 4.50 | [ |
A1(5) | satt382 | 5.20 | [ |
[1] | 盖钧镒, 王明军, 陈长之. 中国毛豆生产的历史渊源与发展[J]. 大豆科学, 2002, 21(1): 7-13. |
GAI J Y, WANG M J, CHEN C Z. Historical origin and developmen t of maodou production in China[J]. Soybean Science, 2002, 21(1): 7-13.(in Chinese) | |
[2] | KONOVSKY J, LUMPKIN T A, MCCLARY D. Edamame: the vegetable soybean[M]//Understanding the Japanese Food and Agrimarket. Los Angeles: CRC Press, 2020: 173-181. |
[3] |
DONG D K, FU X J, YUAN F J, et al. Genetic diversity and population structure of vegetable soybean (Glycine max(L.) Merr.) in China as revealed by SSR markers[J]. Genetic Resources and Crop Evolution, 2014, 61(1): 173-183.
DOI URL |
[4] | ZEIPIŅA S, ALSIŅA I, LEPSE L. Insight in edamame yield and quality parameters: a review[R]. International Scientific Conference: Research for Rural Development 2017,Jelgava (Latvia), 2017: 40-45. |
[5] | TSOU S C S, HONG T L. Research on vegetable soybean quality in Taiwan [C]//Workshop on Vegetable Soybean Research Needs for Production and Quality Improvement, Taiwan. 1991: 103-107. |
[6] |
YOUNG G, MEBRAHTU T, JOHNSON J. Acceptability of green soybeans as a vegetable entity[J]. Plant Foods for Human Nutrition, 2000, 55(4): 323-333.
DOI URL |
[7] | 陈学珍, 谢皓, 郑晓宇, 等. 菜用大豆的农艺及品质性状评价与相关性分析[J]. 北京农学院学报, 2005, 20(1): 23-26. |
CHEN X Z, XIE H, ZHENG X Y, et al. Relation analysis and evaluation on agronomic and quality characters in vegetable soybean[J]. Journal of Beijing Agricultural College, 2005, 20(1): 23-26.(in Chinese with English abstract) | |
[8] |
JIANG G L, RUTTO L K, REN S, et al. Genetic analysis of edamame seed composition and trait relationships in soybean lines[J]. Euphytica, 2018, 214(9): 1-10.
DOI URL |
[9] | 汪自强, 艾麦里, 苏贤坤. 鲜食大豆食味品质的评价指标研究[J]. 中国粮油学报, 2004, 19(3): 47-50. |
WANG ZQ, EMERY, SU XK. Studies on vegetable soybean quality assess factors[J]. Chinese Cereals and Oils Association, 2004, 19(3): 47-50.(in Chinese with English abstract) | |
[10] | MASUDA R. The strategy for sweetness increase of vegetable soybean: maltose, another sugar in boiled seeds [C]//VII World Soybean Research Conference, IV International Soybean Processing and Utilization Conference, III Brazilian Congress. 2004: 839-844. |
[11] |
张秋英, 李彦生, 刘长锴, 等. 菜用大豆食用品质关键组分及其积累动态研究[J]. 作物学报, 2015, 41(11): 1692-1700.
DOI |
ZHANG Q Y, LI Y S, LIU C K, et al. Key components of eating quality and their dynamic accumulation in vegetable soybean varieties [Glycine max(L.) Merr.][J]. Acta Agronomica Sinica, 2015, 41(11): 1692-1700.(in Chinese with English abstract)
DOI URL |
|
[12] | LI Y, DU M, ZHANG Q, et al. Greater differences exist in seed protein, oil, total soluble sugar and sucrose content of vegetable soybean genotypes [Glycine max(L.) Merrill] in Northeast China[J]. Australian Journal of Crop Science, 2012, 12(6): 1681-1686. |
[13] |
SUGIMOTO M, GOTO H, OTOMO K, et al. Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions[J]. Journal of Agricultural and Food Chemistry, 2010, 58(14): 8418-8425.
DOI URL |
[14] | 张古文, 沈立, 郑华章, 等. 菜用大豆籽粒蔗糖积累及蔗糖磷酸合成酶研究进展[J]. 分子植物育种, 2019, 17(17): 5822-5828. |
ZHANG G W, SHEN L, ZHENG H Z, et al. Research advances on sucrose accumulation and sucrose phosphate synthase in seeds of vegetable soybean[J]. Molecular Plant Breeding, 2019, 17(17): 5822-5828.(in Chinese with English abstract) | |
[15] |
李彦生, 南海洋, 杜明, 等. 菜用大豆籽粒不同部位蔗糖积累及关键酶活性[J]. 作物学报, 2013, 39(11): 2099-2105.
DOI |
LI Y S, NAN H Y, DU M, et al. Sucrose accumulation and key enzyme activities in different parts of seed in vegetable soybean[J]. Acta Agronomica Sinica, 2013, 39(11): 2099-2105.(in Chinese with English abstract)
DOI URL |
|
[16] |
CZAIKOSKI K, LEITE R S, MANDARINO J M G, et al. Canning of vegetable-type soybean in acidified brine: effect of the addition of sucrose and pasteurisation time on color and other characteristics[J]. Industrial Crops and Products, 2013, 45: 472-476.
DOI URL |
[17] |
SONG J F, LIU C Q, LI D J, et al. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max[L.]Merr)[J]. Industrial Crops and Products, 2013, 50: 743-749.
DOI URL |
[18] | MOZZONI L A, CHEN P Y, MORAWICKI R O, et al. Quality attributes of vegetable soybean as a function of boiling time and condition[J]. International Journal of Food Science & Technology, 2009, 44(11): 2089-2099. |
[19] |
LIU C K, TU B J, LI Y S, et al. Potassium application affects key enzyme activities of sucrose metabolism during seed filling in vegetable soybean[J]. Crop Science, 2017, 57(5): 2707-2717.
DOI URL |
[20] | 刘长锴, 李彦生, 涂冰洁, 等. 钾肥施用对菜用大豆生殖生长期可溶性糖含量及产量的影响[J]. 大豆科学, 2016, 35(2): 270-274. |
LIU C K, LI Y S, TU B J, et al. Effect of potassium fertilizer application on soluble sugar content during reproductive stages and yield in vegetable soybean[J]. Soybean Science, 2016, 35(2): 270-274.(in Chinese with English abstract) | |
[21] |
LIU C J, FENG N J, ZHENG D F, et al. Uniconazole and diethyl aminoethylhexanoate increase soybean pod setting and yield by regulating sucrose and starch content[J]. Journal of the Science of Food and Agriculture, 2019, 99(2): 748-758.
DOI URL |
[22] | KO J M, HA T J, KIM H T, et al. Changing patterns of sugars and tocopherols at before and after harvest of vegetable soybean[J]. Korea Soybean Digest, 2012, 28(1): 51-58. |
[23] |
SALDIVAR X, WANG Y J, CHEN P Y, et al. Changes in chemical composition during soybean seed development[J]. Food Chemistry, 2011, 124(4): 1369-1375.
DOI URL |
[24] |
XU Y X, CARTIER A, KIBET D, et al. Physical and nutritional properties of edamame seeds as influenced by stage of development[J]. Journal of Food Measurement and Characterization, 2016, 10(2): 193-200.
DOI URL |
[25] | 侯金锋. 大豆鲜籽粒蔗糖含量的研究及糖代谢相关基因的克隆与功能分析[D]. 南京: 南京农业大学, 2012. |
HOU J F. Studies on the sucrose contents of fresh seeds and functional analysis of key genes involved in sugar accumulation in soybean[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[26] | JEGADEESAN S, YU K F. Food grade soybean breeding, current status and future directions[M]//Legume crops-prospects, production and uses. IntechOpen, 2020. |
[27] |
KIM H K, KANG S T, CHO J H, et al. Quantitative trait loci associated with oligosaccharide and sucrose contents in soybean (Glycine maxL.)[J]. Journal of Plant Biology, 2005, 48(1): 106-112.
DOI URL |
[28] |
ZENG A, CHEN P, SHI A, et al. Identification of quantitative trait loci for sucrose content in soybean seed[J]. Crop Science, 2014, 54(2): 554-564.
DOI URL |
[29] |
KIM H K, KANG S T, OH K W. Mapping of putative quantitative trait loci controlling the total oligosaccharide and sucrose content of Glycine max seeds[J]. Journal of Plant Research, 2006, 119(5): 533-538.
DOI URL |
[30] |
JAUREGUY L M, CHEN P Y, SCABOO A M. Heritability and correlations among food-grade traits in soybean[J]. Plant Breeding, 2011, 130(6): 647-652.
DOI URL |
[31] |
KHANANDE A S, JADHAV P V, KALE P B, et al. Genetic diversity in vegetable and grain type soybean genotypes identified using morphological descriptor and EST-SSR markers[J]. Vegetos, 2016, 29(3): 158.
DOI URL |
[32] |
MEBRAHTU T, DEVINE T E. Diallel analysis of sugar composition of 10 vegetable soybean lines[J]. Plant Breeding, 2009, 128(3): 249-252.
DOI URL |
[33] |
MAUGHAN P J, MAROOF M A S, BUSS G R. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max)[J]. Molecular Breeding, 2000, 6(1): 105-111.
DOI URL |
[34] |
LEE J S, KIM S M, KANG S. Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine max(L.) Merr.]using 180 K Axiom^® SoyaSNP genotyping platform[J]. Euphytica, 2016, 208(1): 195-203.
DOI URL |
[35] | VAUGHN J N, NELSON R L, SONG Q J, et al. The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations[J]. G3(Bethesde)), 2014, 4(11): 2283-2294. |
[36] |
HOU J F, WANG C L, HONG X J, et al. Association analysis of vegetable soybean quality traits with SSR markers[J]. Plant Breeding, 2011, 130(4): 444-449.
DOI URL |
[37] |
SKONECZKA J A, MAROOF M A S, SHANG C, et al. Identification of candidate gene mutation associated with low stachyose phenotype in soybean line PI200508[J]. Crop Science, 2009, 49(1): 247-255.
DOI URL |
[38] | VAN DEN ENDE W. Multifunctional fructans and raffinose family oligosaccharides[J]. Frontiers in Plant Science, 2013, 4: 247. |
[39] | SMIRICKY M R, GRIESHOP C M, ALBIN D M, et al. The influence of soy oligosaccharides on apparent and true ileal amino aciddigestibilities and fecal consistency in growing pigs[J]. Journal of Animal Science, 2002, 80(9): 2433-2441. |
[40] |
HOU A, CHEN P, ALLOATTI J, et al. Genetic variability of seed sugar content in worldwide soybean germplasm collections[J]. Crop Science, 2009, 49(3): 903-912.
DOI URL |
[41] |
HAGELY K B, JO H, KIM J H, et al. Molecular-assisted breeding for improved carbohydrate profiles in soybean seed[J]. Theoretical and Applied Genetics, 2020, 133(4): 1189-1200.
DOI URL |
[42] |
HAGELY K B, PALMQUIST D, BILYEU K D. Classification of distinct seed carbohydrate profiles in soybean[J]. Journal of Agricultural and Food Chemistry, 2013, 61(5): 1105-1111.
DOI URL |
[43] | DIERKING E C, BILYEU K D. Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype[J]. The Plant Genome, 2008, 1(2): plantgenome2008.06.0321. |
[44] |
DIERKING E C, BILYEU K D. New sources of soybean seed meal and oil composition traits identified through TILLING[J]. BMC Plant Biology, 2009, 9: 89.
DOI URL |
[45] |
RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65: 33-67.
DOI URL |
[46] |
ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants: conserved and novel mechanisms[J]. Annual Review of Plant Biology, 2006, 57: 675-709.
DOI URL |
[47] |
HUBER S C, HUBER J L. Role and regulation of sucrose-phosphate synthase in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 431-444.
DOI URL |
[48] |
DOEHLERT D C, HUBER S C. Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate, and pH[J]. Plant Physiology, 1983, 73(4): 989-994.
DOI URL |
[49] | 张古文, 胡齐赞, 徐盛春, 等. 菜用大豆籽粒发育过程中蔗糖积累及相关酶活性的研究[J]. 浙江农业学报, 2012, 24(6): 1015-1020. |
ZHANG GW, HU QZ, XU SC, et al. Study on sucrose accumulation and enzyme activities involved in sucrose metabolism in developing seeds of vegetable soybean[J]. Acta Agriculturae Zhejiangensis, 2012, 24(6): 1015-1020.(in Chinese with English abstract) | |
[50] |
TOROSER D, HUBER S C. Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves[J]. Plant Physiology, 1997, 114(3): 947-955.
DOI URL |
[51] |
TOROSER D, ATHWAL G S, HUBER S C. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins[J]. FEBS Letters, 1998, 435(1): 110-114.
DOI URL |
[52] |
TOROSER D, MCMICHAEL R, KRAUSE K P, et al. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation[J]. The Plant Journal, 1999, 17(4): 407-413.
DOI URL |
[53] | LUNN J E, ASHTON A R, HATCH M D, et al. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(23): 12914-12919. |
[54] | 徐志华. 大豆蔗糖代谢相关基因GmCInv1和GmSPP1的克隆及功能分析[D]. 南京: 南京农业大学, 2013. |
XU Z H. Molecular cloning and functional analysis of GmCInv1 and GmSPP1 genes involved in sucrose accumulation from soybean[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract) | |
[55] |
ROITSCH T, GONZÁLEZ M C. Function and regulation of plant invertases: sweet sensations[J]. Trends in Plant Science, 2004, 9(12): 606-613.
DOI URL |
[56] |
EVELAND A L, JACKSON D P. Sugars, signalling, and plant development[J]. Journal of Experimental Botany, 2012, 63(9): 3367-3377.
DOI URL |
[57] | 何艺涛, 王广亚, 范春芬, 等. 植物蔗糖合酶研究进展[J]. 植物生理学报, 2020, 56(6): 1165-1176. |
HE Y T, WANG G Y, FAN C F, et al. Research progress of sucrose synthase in plants[J]. Plant Physiology Journal, 2020, 56(6): 1165-1176.(in Chinese with English abstract) | |
[58] |
XU S M, BRILL E, LLEWELLYN D J, et al. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production[J]. Molecular Plant, 2012, 5(2): 430-441.
DOI URL |
[59] | 晁毛妮, 张自阳, 王润豪, 等. 大豆蔗糖合成酶家族成员的全基因组鉴定及表达分析[J]. 西北植物学报, 2018, 38(2): 232-241. |
CHAO M N, ZHANG Z Y, WANG R H, et al. Genome-wide identification and expression analysis of sucrose synthase family members in soybean [Glycine max(L.) Merr][J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(2): 232-241.(in Chinese with English abstract) | |
[60] |
BAUD S, VAULTIER M N, ROCHAT C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis[J]. Journal of Experimental Botany, 2004, 55(396): 397-409.
DOI URL |
[61] |
ABID G, MUHOVSKI Y, JACQUEMIN J M, et al. Characterization and expression profile analysis of a sucrose synthase gene from common bean (Phaseolus vulgaris L.) during seed development[J]. Molecular Biology Reports, 2012, 39(2): 1133-1143.
DOI URL |
[62] |
RUAN Y L, LLEWELLYN D J, LIU Q, et al. Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton[J]. Functional Plant Biology, 2008, 35(5): 382-393.
DOI URL |
[63] |
GORDON A J, MINCHIN F R, JAMES C L, et al. Sucrose synthase in legume nodules is essential for nitrogen fixation[J]. Plant Physiology, 1999, 120(3): 867-878.
DOI URL |
[64] |
CRAIG J, BARRATT P, TATGE H, et al. Mutations at therug4locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase[J]. The Plant Journal, 1999, 17(4): 353-362.
DOI URL |
[65] |
BARRERO-SICILIA C, HERNANDO-AMADO S, GONZÁLEZ-MELENDI P, et al. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley[J]. Planta, 2011, 234(2): 391-403.
DOI URL |
[66] | PELLESCHI S, ROCHER J P, PRIOUL J L. Effect of water restriction on carbohydrate metabolism and photosynjournal in mature maize leaves[J]. Plant, Cell and Environment, 1997, 20(4): 493-503. |
[67] |
RUAN Y L, JIN Y, YANG Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010, 3(6): 942-955.
DOI URL |
[68] |
WAN H J, WU L M, YANG Y J, et al. Evolution of sucrose metabolism: the dichotomy of invertases and beyond[J]. Trends in Plant Science, 2018, 23(2): 163-177.
DOI URL |
[69] |
BARKER L, KÜHN C, WEISE A, et al. SUT2, a putative sucrose sensor in sieve elements[J]. The Plant Cell, 2000, 12(7): 1153-1164.
DOI URL |
[70] |
HIROSE T, ZHANG Z J, MIYAO A, et al. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected[J]. Journal of Experimental Botany, 2010, 61(13): 3639-3646.
DOI URL |
[71] | AOKI N, HIROSE T, SCOFIELD G N, et al. The sucrose transporter gene family in rice[J]. Plant & Cell Physiology, 2003, 44(3): 223-232. |
[72] |
SRIVASTAVA A C, GANESAN S, ISMAIL I O, et al. Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport[J]. Plant Physiology, 2008, 148(1): 200-211.
DOI URL |
[73] | KUHN C, QUICK W P, SCHULZ A, et al. Companion cell-specific inhibition of the potato sucrose transporter SUT1[J]. Plant, Cell and Environment, 1996, 19(10): 1115-1123. |
[74] | VAUGHN M W, HARRINGTON G N, BUSH D R. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10876-10880. |
[75] |
ZHANG Y M, HU R F, LI H W, et al. Proteomics changes in filling seeds of vegetable soybean[J]. HortScience, 2016, 51(11): 1397-1401.
DOI URL |
[76] | 张玉梅, 胡润芳, 林国强. 菜用大豆蔗糖转运蛋白生物信息学分析[J]. 大豆科学, 2018, 37(6): 866-870. |
ZHANG Y M, HU R F, LIN G Q. Bioinformatics analysis of vegetable soybean sucrose transporter[J]. Soybean Science, 2018, 37(6): 866-870.(in Chinese with English abstract) | |
[77] | 张玉梅, 胡润芳, 林国强. 菜用大豆蔗糖转运蛋白基因Glyma18g15950的克隆及生物信息学分析[J]. 中国农学通报, 2019, 35(23): 29-34. |
ZHANG Y M, HU R F, LIN G Q. Cloning and bioinformatics analysis of sucrose transporter gene Glyma18g15950 in vegetable soybean[J]. Chinese Agricultural Science Bulletin, 2019, 35(23): 29-34.(in Chinese with English abstract) | |
[78] |
FARRAR J, POLLOCK C, GALLAGHER J. Sucrose and the integration of metabolism in vascular plants[J]. Plant Science, 2000, 154(1): 1-11.
DOI URL |
[79] | CHAUDHARY J, SHIVARAJ S M, KHATRI P, et al. Approaches, applicability, and challenges for development of climate-smart soybean[M]. Genomic designing of climate-smart oilseed crops. Cham, Switzerland: Springer Cham, 2019, 1-74. |
[80] |
ESCAMILLA D M, ROSSO M L, HOLSHOUSER D L, et al. Improvement of soybean cultivars for natto production through the selection of seed morphological and physiological characteristics and seed compositions: a review[J]. Plant Breeding, 2019, 138(2): 131-139.
DOI URL |
[81] | 赵晋铭. 菜用大豆主要品质性状的遗传与基因定位研究[D]. 南京: 南京农业大学, 2007. |
ZHAO J M. Inheritance and QTL mapping of main quality traits of vegetable soybean[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese with English abstract) | |
[82] |
HE J B, MENG S, ZHAO T J, et al. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding[J]. Theoretical and Applied Genetics, 2017, 130(11): 2327-2343.
DOI URL |
[83] |
WHITING R M, TORABI S, LUKENS L, et al. Genomic regions associated with important seed quality traits in food-grade soybeans[J]. BMC Plant Biology, 2020, 20(1): 485.
DOI URL |
[84] |
ZHU J. Analysis of conditional genetic effects and variance components in developmental genetics[J]. Genetics, 1995, 141(4): 1633-1639.
DOI URL |
[85] |
BU Y P, ZHANG X, WANG C C, et al. Conditional and unconditional QTL analyses of seed hardness in vegetable soybean (Glycine max L. Merr.)[J]. Euphytica, 2018, 214(12): 1-21.
DOI URL |
[86] |
PARK J Y, CANAM T, KANG K Y, et al. Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development[J]. Transgenic Research, 2008, 17(2): 181-192.
DOI URL |
[87] | 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49. |
LIU Y G, LI G S, ZHANG Y L, et al. Current advances on CRISPR/Cas genome editing technologies in plants[J]. Journal of South China Agricultural University, 2019, 40(5): 38-49.(in Chinese with English abstract) | |
[88] | 王超凡, 张大健. 基因编辑技术在大豆种质资源研究中的利用[J]. 植物遗传资源学报, 2020, 21(1): 26-32. |
WANG C F, ZHANG D J. Application of gene editing in studies of soybean germplasm resources[J]. Journal of Plant Genetic Resources, 2020, 21(1): 26-32.(in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||