[1] |
于琦, 李华. 中国蛋鸡产业现状及发展思路[J]. 农业展望, 2018, 14(4): 32-37.
|
|
YU Q, LI H. Status quo and development ideas of China’s layer industry[J]. Agricultural Outlook, 2018, 14(4): 32-37. (in Chinese with English abstract)
|
[2] |
王海涛. 蛋鸡产蛋率影响因素及提高措施[J]. 畜禽业, 2019, 30(4): 31.
|
|
WANG H T. Influencing factors and improving measures of laying hen egg production rate[J]. Livestock and Poultry Industry, 2019, 30(4): 31. (in Chinese)
|
[3] |
刘先旺, 李华龙, 李淼, 等. 基于CS和BP的鸡舍环境与产蛋性能关系模型研究[J]. 江苏农业科学, 2019, 47(11): 267-270.
|
|
LIU X W, LI H L, LI M, et al. Study on relationship model between chicken house environment and egg production performance based on CS and BP[J]. Jiangsu Agricultural Sciences, 2019, 47(11): 267-270. (in Chinese with English abstract)
|
[4] |
李飞, 蒋敏兰. 基于支持向量机回归的蛋鸡产蛋率预测模型[J]. 江苏农业科学, 2019, 47(13): 249-252.
|
|
LI F, JIANG M L. Prediction model of laying rate based on support vector machine regression[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 249-252. (in Chinese with English abstract)
|
[5] |
李飞, 蒋敏兰. 基于极限学习机的蛋鸡产蛋性能预测[J]. 中国家禽, 2019, 41(2): 62-64.
|
|
LI F, JIANG M L. Prediction of laying performance of laying hens based on extreme learning machine[J]. China Poultry, 2019, 41(2): 62-64. (in Chinese with English abstract)
|
[6] |
李飞. 机器学习在鸡蛋产量预测与品质检测中的应用[D]. 金华: 浙江师范大学, 2019.
|
|
LI F. Application of machine learning in egg yield prediction and quality detection[D]. Jinhua: Zhejiang Normal University, 2019. (in Chinese with English abstract)
|
[7] |
OMOMULE T G, DE AJAYI O O, OROGUN A O. Fuzzy prediction and pattern analysis of poultry egg production[J]. Computers and Electronics in Agriculture, 2020, 171: 105301.
DOI
URL
|
[8] |
AHMAD H A. Poultry growth modeling using neural networks and simulated data[J]. Journal of Applied Poultry Research, 2009, 18(3): 440-446.
DOI
URL
|
[9] |
AHMAD H A. Egg production forecasting: determining efficient modeling approaches[J]. Journal of Applied Poultry Research, 2011, 20(4): 463-473.
DOI
URL
|
[10] |
FELIPE V P S, SILVA M A, VALENTE B D, et al. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes[J]. Poultry Science, 2015, 94(4): 772-780.
DOI
URL
|
[11] |
黄红梅. 应用时间序列分析[M]. 北京: 清华大学出版社, 2016: 188.
|
[12] |
LI Y J, YUAN X L, XU J Y, et al. Medium-term forecasting of cold, electric and gas load in multi-energy system based on VAR model[C]// 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). May 31-June 2, 2018, Wuhan, China. IEEE, 2018: 1676-1680.
|
[13] |
郑莉, 段冬梅, 陆凤彬, 等. 我国猪肉消费需求量集成预测: 基于ARIMA、VAR和VEC模型的实证[J]. 系统工程理论与实践, 2013, 33(4): 918-925.
DOI
|
|
ZHENG L, DUAN D M, LU F B, et al. Integration forecast of Chinese pork consumption demand: empirical based on ARIMA, VAR and VEC models[J]. Systems Engineering-Theory & Practice, 2013, 33(4): 918-925. (in Chinese with English abstract)
|
[14] |
张延群. 向量自回归模型的理论方法及应用实例[M]. 北京: 中国社会科学出版社, 2013: 4-5.
|
[15] |
郭学伟. 蛋鸡产蛋高峰期的科学管理[J]. 中国畜禽种业, 2020, 16(9): 188.
|
|
GUO X W. Scientific management during the peak period of laying hens[J]. The Chinese Livestock and Poultry Breeding, 2020, 16(9): 188. (in Chinese)
|
[16] |
张海林. 蛋鸡蛋重的影响因素和控制措施[J]. 现代畜牧科技, 2020(5): 29-30.
|
|
ZHANG H L. Influencing factors and control measures of egg weight[J]. Modern Animal Husbandry Science & Technology, 2020(5): 29-30. (in Chinese)
|