Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (8): 1661-1668.DOI: 10.3969/j.issn.1004-1524.2022.08.10
• Horticultural Science • Previous Articles Next Articles
XIANG Xi(), WANG Siyue, PU Junhong, TANG Wenlu, CHEN Qing*(
)
Received:
2021-02-24
Online:
2022-08-25
Published:
2022-08-26
Contact:
CHEN Qing
CLC Number:
XIANG Xi, WANG Siyue, PU Junhong, TANG Wenlu, CHEN Qing. Flowering transition of Fragaria pentaphylla under low-temperature and short-day conditions[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1661-1668.
引物名称 Primer name | 序列 Sequences(5'-3') |
---|---|
FpActin 2-F | GCTAATCGTGAGAAGATGAC |
FpActin 2-R | AGCACAATACCAGTAGTACG |
FpAP1-F | GCACGAGAAGAATGTAGC |
FpAP1-R | GTTCCTCCTCACCTGAAG |
FpLFY3-F | TGATGATGATGAGGATGAAGA |
FpLFY3-R | CGTAGAGATGGAAGAGGTAAT |
FpCO-F | AACAACAACGGATTCTTCTT |
FpCO-R | TGGTCATTAGTAGCAGTAGT |
FpFT1-F | TCTCAGGGTGACTTACACTTCT |
FpFT1-R | GTTGGCCGTGGACTTTCATA |
Table 1 Primers for real-time quantitative PCR
引物名称 Primer name | 序列 Sequences(5'-3') |
---|---|
FpActin 2-F | GCTAATCGTGAGAAGATGAC |
FpActin 2-R | AGCACAATACCAGTAGTACG |
FpAP1-F | GCACGAGAAGAATGTAGC |
FpAP1-R | GTTCCTCCTCACCTGAAG |
FpLFY3-F | TGATGATGATGAGGATGAAGA |
FpLFY3-R | CGTAGAGATGGAAGAGGTAAT |
FpCO-F | AACAACAACGGATTCTTCTT |
FpCO-R | TGGTCATTAGTAGCAGTAGT |
FpFT1-F | TCTCAGGGTGACTTACACTTCT |
FpFT1-R | GTTGGCCGTGGACTTTCATA |
Fig.1 Bioinformatics analysis of the four key genes for flowering initiation A, Analysis of the structure of flowering genes; B, The expression level of floral genes in the Fragaria vesca shoot meristematic tissues; C, Heat map of floral gene expression in three stages of Fragaria pentaphylla fruit development.
Fig.2 The relative expression levels of the four flowering genes in Fragaria pentaphylla after different time duration under the short-day and low-temperature treatment
Fig.3 Flower bud differentiation process of Fragaria pentaphylla A, Undifferentiated period; B, Inflorescence differentiation period; C, Apical flower bud calyx differentiation period; D, Pistil differentiation period. Scale bars: 500 μm.
[1] | 马鸿翔, 陈佩度. 草莓属低倍性野生资源在育种中利用的研究进展[J]. 果树学报, 2003, 20(4): 305-309. |
MA H X, CHEN P D. Advances in research of using wild strawberry species with lower ploidy in strawberry breeding[J]. Journal of Fruit Science, 2003, 20(4): 305-309. (in Chinese with English abstract) | |
[2] | 时翠平, 牛树启, 葛会波. 草莓属植物染色体核型分析[J]. 安徽农业科学, 2011, 39(13): 7621-7622. |
SHI C P, NIU S Q, GE H B. Chromosomal karyotypes of Fragaria plants[J]. Journal of Anhui Agricultural Sciences, 2011, 39(13): 7621-7622. (in Chinese with English abstract) | |
[3] |
BAI L J, CHEN Q, JIANG L Y, et al. Comparative transcriptome analysis uncovers the regulatory functions of long noncoding RNAs in fruit development and color changes of Fragaria pentaphylla[J]. Horticulture Research, 2019, 6: 42.
DOI URL |
[4] |
TEOTIA S, TANG G L. To bloom or not to bloom: role of MicroRNAs in plant flowering[J]. Molecular Plant, 2015, 8(3): 359-377.
DOI URL |
[5] |
JAUDAL M, WEN J Q, MYSORE K S, et al. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days[J]. BMC Plant Biology, 2020, 20(1): 1-16.
DOI URL |
[6] | YUAN S, ZHANG Z W, ZHENG C, et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7661-7666. |
[7] |
ARONGAUS A B, CHEN S, PIREYRE M, et al. Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods[J]. Genes & Development, 2018, 32(19/20): 1332-1343.
DOI URL |
[8] | SAWA M, KAY S A. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11698-11703. |
[9] |
GRAY J A, SHALIT-KANEH A, CHU D N, et al. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size[J]. Plant Physiology, 2017, 173(4): 2308-2322.
DOI URL |
[10] |
GAWROŃSKI P, ARIYADASA R, HIMMELBACH A, et al. A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the eps-3Am mutant of einkorn wheat[J]. Genetics, 2014, 196(4): 1253-1261.
DOI URL |
[11] |
YOO S K, CHUNG K S, KIM J, et al. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiology, 2005, 139(2): 770-778.
DOI URL |
[12] |
HEPWORTH S R, VALVERDE F, RAVENSCROFT D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO Journal, 2002, 21(16): 4327-4337.
DOI URL |
[13] |
NILSSON O, LEE I, BLÁZQUEZ M A, et al. Flowering-time genes modulate the response to LEAFY activity[J]. Genetics, 1998, 150(1): 403-410.
DOI URL |
[14] |
JAEGER K E, WIGGE P A. FT protein acts as a long-range signal in Arabidopsis[J]. Current Biology, 2007, 17(12): 1050-1054.
DOI URL |
[15] |
LIU L, ZHANG Y, YU H. Florigen trafficking integrates photoperiod and temperature signals in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(9): 1385-1398.
DOI URL |
[16] |
JIN R, KLASFELD S, ZHU Y, et al. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate[J]. Nature Communications, 2021, 12: 626.
DOI URL |
[17] | 张学明, 陈玉波, 侯佳贤, 等. 草莓的花芽分化及其影响因素研究进展[J]. 吉林农业, 2017(21): 85. |
ZHANG X M, CHEN Y B, HOU J X, et al. Research progress on strawberry flower bud differentiation and its influencing factors[J]. Agriculture of Jilin, 2017(21): 85. (in Chinese) | |
[18] | 余红, 马华升, 方献平, 等. 草莓花芽分化机理及调控技术研究进展[J]. 江西农业学报, 2011, 23(1): 58-61. |
YU H, MA H S, FANG X P, et al. Review on mechanism of strawberry flower bud differentiation and application of regulation techniques[J]. Acta Agriculturae Jiangxi, 2011, 23(1): 58-61. (in Chinese with English abstract) | |
[19] |
LI Y P, FENG J, CHENG L C, et al. Gene expression profiling of the shoot meristematic tissues in woodland strawberry Fragaria vesca[J]. Frontiers in Plant Science, 2019, 10: 1624.
DOI URL |
[20] | 杨红. 影响草莓花芽分化因素的研究[D]. 长春: 吉林农业大学, 2005. |
YANG H. Studies on the factors of the flower bud differentiation of strawberry[D]. Changchun: Jilin Agricultural University, 2005. (in Chinese with English abstract) | |
[21] | 王梅. 草莓叶片不定芽发生及抗生素及其影响的研究[D]. 成都: 四川农业大学, 2005. |
WANG M. Study on shoot regeneration from leaves of strawberry and effects of antibiotics on it[D]. Chengdu: Sichuan Agricultural University, 2005. (in Chinese with English abstract) | |
[22] | 白丽军. 五叶草莓(Fragaria pentaphylla Lozinsk)果色变化的转录调控机理研究[D]. 成都: 四川农业大学, 2017. |
BAI L J. Research on transcriptional regulation mechanism of fruit color changes in wild Fragaria pentaphylla[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese with English abstract) | |
[23] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
DOI URL |
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method[J]. Methods, 2001, 25(4): 402-408.
DOI URL |
[25] | 胡志勇. ‘无核瓯柑’、温州蜜柑无核的细胞及分子机理研究[D]. 武汉: 华中农业大学, 2007. |
HU Z Y. Studies on the cytological and molecular mechanism referring seedlessness of ‘Ougan’ and Satsuma mandarin[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese with English abstract) | |
[26] | 王阿香. 侧金盏(Adonis amurensis Regel et Radde)花芽分化和胚胎发育特性研究[D]. 哈尔滨: 东北林业大学, 2016. |
WANG A X. The study on characteristics of flower bud differentiation and embryonic development of Adonis amurensis Regel et Radde[D]. Harbin: Northeast Forestry University, 2016. (in Chinese with English abstract) | |
[27] | 周琴, 张思思, 包满珠, 等. 高等植物成花诱导的分子机理研究进展[J]. 分子植物育种, 2018, 16(11): 3681-3692. |
ZHOU Q, ZHANG S S, BAO M Z, et al. Advances on molecular mechanism of floral initiation in higher plants[J]. Molecular Plant Breeding, 2018, 16(11): 3681-3692. (in Chinese with English abstract) | |
[28] |
CAO S H, LUO X M, XU D, et al. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals[J]. New Phytologist, 2021, 230(5): 1731-1745.
DOI URL |
[29] |
袁玺垒, 王振山, 贾小平, 等. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133-1140.
DOI |
YUAN X L, WANG Z S, JIA X P, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6): 1133-1140. (in Chinese with English abstract) | |
[30] |
YOO S C, CHEN C, ROJAS M, et al. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex[J]. The Plant Journal, 2013, 75(3): 456-468.
DOI URL |
[31] |
NAKANO Y, HIGUCHI Y, YOSHIDA Y, et al. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria×ananassa[J]. Journal of Plant Physiology, 2015, 177: 60-66.
DOI URL |
[32] |
GOSLIN K, ZHENG B B, SERRANO-MISLATA A, et al. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation[J]. Plant Physiology, 2017, 174(2): 1097-1109.
DOI URL |
[33] |
BENLLOCH R, KIM M C, SAYOU C, et al. Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1[J]. The Plant Journal, 2011, 67(6): 1094-1102.
DOI URL |
[34] |
YAMAGUCHI A, WU M F, YANG L, et al. The MicroRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell, 2009, 17(2): 268-278.
DOI URL |
[35] | 韩佩汝, 张正伟, 郑静, 等. 低温对草莓花芽分化的影响[J]. 中国农业大学学报, 2019, 24(1): 30-39. |
HAN P R, ZHANG Z W, ZHENG J, et al. Effects of low temperature on flower bud differentiation in strawberry[J]. Journal of China Agricultural University, 2019, 24(1): 30-39. (in Chinese with English abstract) |
[1] | LIU Kai, XIE Nan, GUO Wei, MA Hengjia. Full-length cDNA cloning and bioinformatic analysis of MHCⅠα gene from black amur bream (Megalobrama terminalis) [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1162-1174. |
[2] | DU Yanbin, ZHANG Gangchen, WANG Yuxin, LIU Baobao, GONG Shenglong, DONG Xiao, WANG Yang. Cloning and bioinformatic analysis of rpoE gene of Streptococcus suis [J]. , 2020, 32(7): 1149-1154. |
[3] | ZHAO Ying\|jie1,LIU Chun\|lin2,RUAN Ying1,*. Cloning of AtSb10 gene in Arabidopsis thaliana and over\|expression of AtSb10 in Arabidopsis thaliana#br# [J]. , 2015, 27(9): 1550-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 665
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 460
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||