Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (8): 1703-1712.DOI: 10.3969/j.issn.1004-1524.2022.08.14
• Horticultural Science • Previous Articles Next Articles
XU Shenping(), ZHANG Yan, LIANG Fang, JIANG Suhua, NIU Suyan, CUI Bo, YUAN Xiuyun*(
)
Received:
2021-10-22
Online:
2022-08-25
Published:
2022-08-26
Contact:
YUAN Xiuyun
CLC Number:
XU Shenping, ZHANG Yan, LIANG Fang, JIANG Suhua, NIU Suyan, CUI Bo, YUAN Xiuyun. Cloning of PhaSEP3 gene in Phalaenopsis and its expression in floral organ mutants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1703-1712.
引物类别 Primer category | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') |
---|---|---|
保守片段扩增 | SEP-F | GMTGAAGAKGATYGAGAACAAGA |
Conserved fragment amplification | SEP-R | TAGCTGGTCRAGCATSAACTG |
3'RACE | outer | AGCAATTAGAGAGGCAACTGGAC |
inner | ATCAAGGGAGACCCAGAATAGTC | |
5'RACE | outer | TCTTTGCAAGGCTTCTACTCTGGA |
inner | TACTTGTGTTGCTGCAGAACTCG | |
ORF扩增 | ORF-F | ATGGGAAGAGGGAGAGTGGAG |
ORF amplification | ORF-R | CATAATGTAATAAGGGGGAAAGCC |
qRT-PCR | qSEP-F | GAGCCCTAAAGATAAGGTTTGAGG |
qSEP-R | ACTGTTGAAGTAGTCGCCGTTG | |
内参基因 | Act-F | GCAGCATGAAGATCAAGGTGG |
Reference genes | Act-R | GCCTTAGAAATCCACATCTGTTG |
Table 1 Information of primers
引物类别 Primer category | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') |
---|---|---|
保守片段扩增 | SEP-F | GMTGAAGAKGATYGAGAACAAGA |
Conserved fragment amplification | SEP-R | TAGCTGGTCRAGCATSAACTG |
3'RACE | outer | AGCAATTAGAGAGGCAACTGGAC |
inner | ATCAAGGGAGACCCAGAATAGTC | |
5'RACE | outer | TCTTTGCAAGGCTTCTACTCTGGA |
inner | TACTTGTGTTGCTGCAGAACTCG | |
ORF扩增 | ORF-F | ATGGGAAGAGGGAGAGTGGAG |
ORF amplification | ORF-R | CATAATGTAATAAGGGGGAAAGCC |
qRT-PCR | qSEP-F | GAGCCCTAAAGATAAGGTTTGAGG |
qSEP-R | ACTGTTGAAGTAGTCGCCGTTG | |
内参基因 | Act-F | GCAGCATGAAGATCAAGGTGG |
Reference genes | Act-R | GCCTTAGAAATCCACATCTGTTG |
Fig.3 Amplification of PhaSEP3 gene in Phalaenopsis A, Conserved region amplification; B, 3' RACE; C, 5' RACE; D, ORF amplification. 1, Conserved region fragment; 2, Fragment of 3' RACE; 3, Fragment of 5' RACE; 4, Fragment of ORF; M, DL2000 marker.
Fig.7 Expression of PhaSEP3 in floral organ mutants of Phalaenopsis A, Red Coral S1024; B, Ney Shai Gu Niang; C, Sogo Beach; D, Wedding Promenade; E, Fuller's Sunset; * indicated significant difference (P<0.05).
[1] |
MONDRAGÓN-PALOMINO M, THEISSEN G. Conserved differential expression of paralogous DEFICIENS-and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’[J]. The Plant Journal: for Cell and Molecular Biology, 2011, 66(6): 1008-1019.
DOI URL |
[2] | SU C L, CHEN W C, LEE A Y, et al. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite[J]. PLoS One, 2013, 8(11): e80462. |
[3] | PAN Z J, CHENG C C, TSAI W C, et al. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth[J]. Plant & Cell Physiology, 2011, 52(9): 1515-1531. |
[4] |
HSU H F, HSU W H, LEE Y I, et al. Model for perianth formation in orchids[J]. Nature Plants, 2015, 1: 15046.
DOI URL |
[5] |
HSU H F, CHEN W H, SHEN Y H, et al. Multifunctional evolution of B and AGL6 MADS box genes in orchids[J]. Nature Communications, 2021, 12: 902.
DOI URL |
[6] | 李成儒, 董钠, 李笑平, 等. 兰科植物花发育调控MADS-box基因家族研究进展[J]. 园艺学报, 2020, 47(10): 2047-2062. |
LI C R, DONG N, LI X P, et al. A review of MADS-box genes, the molecular regulatory genes for floral organ development in Orchidaceae[J]. Acta Horticulturae Sinica, 2020, 47(10): 2047-2062. (in Chinese with English abstract) | |
[7] |
WANG S L, VISWANATH K K, TONG C G, et al. Floral induction and flower development of orchids[J]. Frontiers in Plant Science, 2019, 10: 1258.
DOI URL |
[8] |
王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6): 1149-1158.
DOI |
WANG Y, MU Y X, WANG J. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149-1158. (in Chinese with English abstract) | |
[9] |
PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783): 200-203.
DOI URL |
[10] |
DITTA G, PINYOPICH A, ROBLES P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Current Biology, 2004, 14(21): 1935-1940.
DOI URL |
[11] |
MOREL P, CHAMBRIER P, BOLTZ V, et al. Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-box transcription factor superclade[J]. The Plant Cell, 2019, 31(12): 3033-3056.
DOI URL |
[12] | 相元萍, 黄云彤, 贺洪军, 等. 羽衣甘蓝SEPALLATA-like基因的系统发育与表达分析[J]. 生物工程学报, 2020, 36(11): 2398-2412. |
XIANG Y P, HUANG Y T, HE H J, et al. Phylogenetic and expression analysis of SEPALLATA-like gene in Brassica oleracea L. var. Acephala[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2398-2412. (in Chinese with English abstract) | |
[13] |
LIN Z Y, CAO D D, DAMARIS R N, et al. Genome-wide identification of MADS-box gene family in sacred Lotus(Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development[J]. BMC Plant Biology, 2020, 20(1): 497.
DOI URL |
[14] | 谢小杰, 余海霞, 范志毅, 等. 芒果SEPALLATA3基因的生物信息学与表达分析[J]. 热带作物学报, 2021, 42(9): 2487-2493. |
XIE X J, YU H X, FAN Z Y, et al. Bioinformatics and expression analysis of SEPALLATA3 in Mango[J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2487-2493. (in Chinese with English abstract) | |
[15] |
SLUGINA M A, DYACHENKO E A, KOCHIEVA E Z, et al. Structural and functional diversification of SEPALLATA genes TM5 and RIN in tomato species (section Lycopersicon)[J]. Doklady Biochemistry and Biophysics, 2020, 492(1): 152-158.
DOI URL |
[16] |
ZHANG S S, LU S J, YI S S, et al. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia[J]. Planta, 2017, 245(2): 439-457.
DOI URL |
[17] |
CALLENS C, TUCKER M R, ZHANG D B, et al. Dissecting the role of MADS-box genes in monocot floral development and diversity[J]. Journal of Experimental Botany, 2018, 69(10): 2435-2459.
DOI URL |
[18] |
TEO Z W N, ZHOU W, SHEN L S. Dissecting the function of MADS-box transcription factors in orchid reproductive development[J]. Frontiers in Plant Science, 2019, 10: 1474.
DOI URL |
[19] |
PAN Z J, CHEN Y Y, DU J S, et al. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes[J]. The New Phytologist, 2014, 202(3): 1024-1042.
DOI URL |
[20] | 袁秀云, 田云芳, 蒋素华, 等. 朵丽蝶兰MADS-box基因DtpsMADS1的克隆与表达特性[J]. 植物研究, 2014, 34(1): 53-61. |
YUAN X Y, TIAN Y F, JIANG S H, et al. Cloning and expression analysis of DtpsMADS1 gene from doritaenopsis hybrid[J]. Bulletin of Botanical Research, 2014, 34(1): 53-61. (in Chinese with English abstract) | |
[21] | 袁秀云, 许申平, 王莹博, 等. 蝴蝶兰PhalPI基因的克隆及在花器官突变体中的表达分析[J]. 植物研究, 2017, 37(3): 416-423. |
YUAN X Y, XU S P, WANG Y B, et al. Cloning of PhalPI gene from Phalaenopsis and its expression in floral organ mutants[J]. Bulletin of Botanical Research, 2017, 37(3): 416-423. (in Chinese with English abstract) | |
[22] |
袁秀云, 许申平, 雷志华, 等. 蝴蝶兰PhAG1b基因的克隆及在突变体花器官中的表达分析[J]. 核农学报, 2018, 32(3): 438-447.
DOI |
YUAN X Y, XU S P, LEI Z H, et al. Cloning of PhAG1b gene from Phalaenopsis and its expression in floral organ mutants[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(3): 438-447. (in Chinese with English abstract) | |
[23] | 袁秀云, 许申平, 雷志华, 等. 蝴蝶兰C类花器官发育基因PhAG1a的克隆及表达分析[J]. 热带作物学报, 2017, 38(12): 2294-2301. |
YUAN X Y, XU S P, LEI Z H, et al. Cloning and expression of the class C floral organ identity gene PhAG1a from Phalaenopsis[J]. Chinese Journal of Tropical Crops, 2017, 38(12): 2294-2301. (in Chinese with English abstract) | |
[24] | THOMSON B, WELLMER F. Molecular regulation of flower development[J]. Current Topics in Developmental Biology, 2019, 131: 185-210. |
[25] |
STEWART D, GRACIET E, WELLMER F. Molecular and regulatory mechanisms controlling floral organ development[J]. The FEBS Journal, 2016, 283(10): 1823-1830.
DOI URL |
[26] |
WU D, LIANG W Q, ZHU W W, et al. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice[J]. Plant Physiology, 2017, 176(2): 1646-1664.
DOI URL |
[27] |
IMMINK R G H, TONACO I A N, DE FOLTER S, et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation[J]. Genome Biology, 2009, 10(2): R24.
DOI URL |
[28] |
HUGOUVIEUX V, SILVA C S, JOURDAIN A, et al. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis[J]. Nucleic Acids Research, 2018, 46(10): 4966-4977.
DOI URL |
[29] | ACRI-NUNES-MIRANDA R, MONDRAGÓN-PALOMINO M. Expression of paralogous SEP-, FUL-, AG-and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers[J]. Frontiers in Plant Science, 2014, 5: 76. |
[30] |
XIANG L, CHEN Y, CHEN L P, et al. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f[J]. Physiologia Plantarum, 2018, 162(3): 353-369.
DOI URL |
[31] |
MITOMA M, KANNO A. The greenish flower phenotype of Habenaria radiata (Orchidaceae) is caused by a mutation in the SEPALLATA-like MADS-box gene HrSEP-1[J]. Frontiers in Plant Science, 2018, 9: 831.
DOI URL |
[32] |
ZHANG T, ZHAO Y F, JUNTHEIKKI I, et al. Dissecting functions of SEPALLATA-like MADS box genes in patterning of the pseudanthial inflorescence of Gerbera hybrida[J]. New Phytologist, 2017, 216(3): 939-954.
DOI URL |
[33] | KAUFMANN K, MUIÑO J M, JAUREGUI R, et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower[J]. PLoS Biology, 2009, 7(4): e1000090. |
[34] |
KOBAYASHI K, YASUNO N, SATO Y, et al. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene[J]. The Plant Cell, 2012, 24(5): 1848-1859.
DOI URL |
[35] |
SEYMOUR G B, RYDER C D, CEVIK V, et al. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue[J]. Journal of Experimental Botany, 2011, 62(3): 1179-1188.
DOI URL |
[36] |
IRELAND H S, YAO J L, TOMES S, et al. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening[J]. The Plant Journal, 2013, 73(6): 1044-1056.
DOI URL |
[37] | QI X L, LIU C L, SONG L L, et al. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening[J]. Plant Science, 2020, 301: 110634. |
[38] |
LI J J, LI F, QIAN M, et al. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits[J]. Plant Science, 2017, 257: 63-73.
DOI URL |
[1] | LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008. |
[2] | JIANG Qiufei, CAI Zhengyun, HUANG Zengwen, FENG Xiaofang, ZHANG Juan, GU Yaling. Functional analysis of EEF1D mutation site in dairy cow milk fat traits candidate gene [J]. , 2020, 32(7): 1155-1159. |
[3] | JIA Xiaoping, WANG Zhenshan, ZHU Xuehai, YANG Dezhi, KOU Shujun, LIU Xingxing. Genetic analysis of dwarf gene for dwarf mutant“819” in Panicum miliaceum L. [J]. , 2020, 32(1): 20-27. |
[4] | ZHANG Bo, JIA Xiaoping, YANG Dezhi, ZHAO Yuan, DAI Lingfeng, KOU Shujun, ZHANG Xiaomei, HOU Dianyun, ZHU Xuehai. Investigation on agronomic characters of dwarf mutant in Panicum miliaceuml and analysis of its sensitivity to GA [J]. , 2019, 31(5): 688-694. |
[5] | WANG Yan, SHI Haichun, YU Xuejie, ZHAO Changyun, KE Yongpei. Analysis of physiological and biochemical characteristics of maize male sterile mutant K305ms [J]. , 2018, 30(8): 1281-1287. |
[6] | XU Xiuhong, LYU Guihua, GUO Guojin, CHEN Jianjian. Identification and characterization of low phytic acid germplasm in maize (Zea mays L.) [J]. , 2018, 30(8): 1288-1294. |
[7] | FANG Min\|yan1,ZHANG Ming2,KONG Wei\|liang1. Evaluation of morphological and growth characteristics of somatic embryo mutants of Zoysia [J]. , 2016, 28(2): 269-. |
[8] | CHENG Chen1,2, WANG Jing1,2, YUAN Wen\|xia1,2, LI Dong\|yue1,2,YANG Yong1,2,YAN Cheng\|qi1,2, CHEN Jian\|ping1,2,*. Research progress of disease\|related genes in rice lesion mimic mutants [J]. , 2015, 27(7): 1294-. |
[9] | SUN Chu1,2,TONG Jie\|peng1,WANG Yan1,PAN Ping\|chuan3,SHEN Sheng\|quan1,*. Physiological properties and ultra\|structure features of an early leaf senescence rice mutant R7954(els)#br# [J]. , 2015, 27(10): 1685-. |
[10] | REN San\|juan,TONG Jie\|peng,WANG Yan,SHEN Sheng\|quan* . Study on the spike development of a spikelet\|rudimentary rice mutant spd\|hp73 [J]. , 2014, 26(5): 1151-. |
[11] | JIN Yang;WANG Yue;YYU Shi-ying;CHEN Xi-feng;MA Bo-jun*. Establishment of embryogenic suspension cell line of rice lesion mimic mutant spl5 [J]. , 2013, 25(3): 0-460. |
[12] | TANG Ning-an;NIU Xiao-wei;ZHANG Yue-jian;SHOU Wei-song;FAN Min;*. Construction of FonSIX6 deletion mutant of Fusarium oxysporum f.sp. niveurn [J]. , 2013, 25(2): 0-292. |
[13] | ZHANG Weihong;ZHU Tingheng;WANG Kun;CUI Zhifeng*. Molecular identification and phenotypic analysis of a Botrytis cinerea mutant defective in cell wall integrity [J]. , 2012, 24(4): 0-636. |
[14] | LI Bai-quan;JIANG Ying;FU Xu-jun;ZHU Shen-long;ZHU Dan-hua;YUAN Feng-jie*. Fine mapping of the Gm-lpa-ZC-2 gene in a low phytic acid soybean mutant [J]. , 2011, 23(5): 0-875. |
[15] | LEI Na;ZHANG Wei-hong;ZHU Ting-heng;WANG Kun;CUI Zhi-feng* . Isolation of the cell wall defect mutants by T-DNA insertion in Botrytis cinerea [J]. , 2011, 23(4): 0-758. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 390
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||