Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (11): 2001-2008.DOI: 10.3969/j.issn.1004-1524.2021.11.01
• Crop Science • Previous Articles Next Articles
LI Hongying(), GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang*(
)
Received:
2020-12-11
Online:
2021-11-25
Published:
2021-11-26
Contact:
LIU Longchang
CLC Number:
LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.11.01
引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
---|---|---|---|
AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
Table 1 Sequence of primers
引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
---|---|---|---|
AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
Fig.2 Gel electrophoresis detection of PCR amplification products of three target sgRNA expression cassettes M, DL 2000 marker; T1, Target site 1; T2, Target site 2; T3, Target site 3.
Fig.4 PCR amplification detection of hygromycin B gene in T0 transgenic plants with hygromycin B tolerance M, DL 2000 DNA marker; 1-19, Positive seedlings of transgenic lines with hygromycin B tolerance; wt, Wild type.
Fig.5 PCR amplification of AGO2 gene fragments containing editing target sites of selected transgenic lines M,DL 2000 DNA marker; #2-#54, T1 transgenic plants.
[1] |
USLU V V, WASSENEGGER M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA[J]. Current Opinion in Virology, 2020, 42:18-24.
DOI URL |
[2] |
DING S W. RNA-based antiviral immunity[J]. Nature Reviews Immunology, 2010, 10(9):632-644.
DOI URL |
[3] |
ZHU L Z, JIANG H L, SHEONG F K, et al. Understanding the core of RNA interference: the dynamic aspects of Argonaute-mediated processes[J]. Progress in Biophysics and Molecular Biology, 2017, 128:39-46.
DOI URL |
[4] |
SHEU-GRUTTADAURIA J, MACRAE I J. Structural foundations of RNA silencing by argonaute[J]. Journal of Molecular Biology, 2017, 429(17):2619-2639.
DOI URL |
[5] |
FÁTYOL K, LUDMAN M, BURGYÁN J. Functional dissection of a plant Argonaute[J]. Nucleic Acids Research, 2016, 44(3):1384-1397.
DOI URL |
[6] |
FANG X F, QI Y J. RNAi in plants: an argonaute-centered view[J]. The Plant Cell, 2016, 28(2):272-285.
DOI URL |
[7] |
CARBONELL A, CARRINGTON J C. Antiviral roles of plant ARGONAUTES[J]. Current Opinion in Plant Biology, 2015, 27:111-117.
DOI URL |
[8] |
BROSSEAU C, MOFFETT P. Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing[J]. The Plant Cell, 2015, 27(6):1742-1754.
DOI URL |
[9] |
ZHU H L, HU F Q, WANG R H, et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256.
DOI URL |
[10] |
BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond[J]. Nature Biotechnology, 2016, 34(9):933-941.
DOI URL |
[11] |
HARRISON M M, JENKINS B V, O’CONNOR-GILES K M, et al. A CRISPR view of development[J]. Genes & Development, 2014, 28(17):1859-1872.
DOI URL |
[12] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7):1-11. |
JING R C, LU H. The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7):1-11.(in Chinese with English abstract) | |
[13] | 郭建秋, 雷全奎, 杨小兰, 等. 植物突变体库的构建及突变体检测研究进展[J]. 河南农业科学, 2010, 39(6):150-155. |
GUO J Q, LEI Q K, YANG X L, et al. Research progress of plant mutant library construction and mutant detection[J]. Journal of Henan Agricultural Sciences, 2010, 39(6):150-155.(in Chinese) | |
[14] |
VAUCHERET H. Plant ARGONAUTES[J]. Trends in Plant Science, 2008, 13(7):350-358.
DOI URL |
[15] |
JEAN M. The multilayer’s control of ARGONAUTE 1 contents[J]. Molecular Plant, 2020, 13(1):1-3.
DOI URL |
[16] |
ZHANG X M, ZHAO H W, GAO S, et al. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a Golgi-localized SNARE gene, MEMB12[J]. Molecular Cell, 2011, 42(3):356-366.
DOI URL |
[17] |
HU P, ZHAO H W, ZHU P, et al. Dual regulation of Arabidopsis AGO2 by arginine methylation[J]. Nature Communications, 2019, 10:844.
DOI URL |
[18] |
WANG H Y, LIU C, REN Y C, et al. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis[J]. Plant Science, 2019, 288:110218.
DOI URL |
[19] |
XIE X R, MA X L, ZHU Q L, et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249.
DOI URL |
[20] |
ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes[J]. PLoS One, 2009, 4(5):e5553.
DOI URL |
[21] |
ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2):641-646.
DOI URL |
[22] |
WANG X B, JOVEL J, UDOMPORN P, et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(4):1625-1638.
DOI URL |
[23] |
WU K X, WU Y D, ZHANG C W, et al. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector[J]. Plant Methods, 2021, 17(1):6.
DOI URL |
[24] |
ODOKONYERO D, MENDOZA M R, ALVARADO V Y, et al. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses[J]. Virology, 2015, 486:209-218.
DOI URL |
[25] |
MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284.
DOI URL |
[26] | 原文霞, 王栩鸣, 李冬月, 等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5):685-693. |
YUAN W X, WANG X M, LI D Y, et al. Application of the technology of CRISPR/Cas9 edit rice gene[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5):685-693.(in Chinese with English abstract) | |
[27] | ZHENG S Y, LI J, MA L, et al. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15):7549-7558. |
[28] |
LUDMAN M, BURGYÁN J, FÁTYOL K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses[J]. Scientific Reports, 2017, 7:1010.
DOI URL |
[1] | TAN Xiaojing, WANG Zhonghua, WU Yueyan, ZHENG Ersong, XU Rumeng, CHEN Jianping, WANG Xuming, YAN Chengqi. Application progress of gene editing techniques in rice disease-resistant genes and breeding research [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1982-1990. |
[2] | JIANG Qiufei, CAI Zhengyun, HUANG Zengwen, FENG Xiaofang, ZHANG Juan, GU Yaling. Functional analysis of EEF1D mutation site in dairy cow milk fat traits candidate gene [J]. , 2020, 32(7): 1155-1159. |
[3] | JIA Xiaoping, WANG Zhenshan, ZHU Xuehai, YANG Dezhi, KOU Shujun, LIU Xingxing. Genetic analysis of dwarf gene for dwarf mutant“819” in Panicum miliaceum L. [J]. , 2020, 32(1): 20-27. |
[4] | ZHANG Bo, JIA Xiaoping, YANG Dezhi, ZHAO Yuan, DAI Lingfeng, KOU Shujun, ZHANG Xiaomei, HOU Dianyun, ZHU Xuehai. Investigation on agronomic characters of dwarf mutant in Panicum miliaceuml and analysis of its sensitivity to GA [J]. , 2019, 31(5): 688-694. |
[5] | WANG Yan, SHI Haichun, YU Xuejie, ZHAO Changyun, KE Yongpei. Analysis of physiological and biochemical characteristics of maize male sterile mutant K305ms [J]. , 2018, 30(8): 1281-1287. |
[6] | XU Xiuhong, LYU Guihua, GUO Guojin, CHEN Jianjian. Identification and characterization of low phytic acid germplasm in maize (Zea mays L.) [J]. , 2018, 30(8): 1288-1294. |
[7] | YUAN Wenxia, WANG Xuming, LI Dongyue, ZHOU Jie, YAN Chengqi, CHEN Jianping. Application of the technology of CRISPR/Cas9 edit rice gene [J]. , 2017, 29(5): 685-693. |
[8] | SHEN Chunxiu. CRISPR/Cas9 editing and expression analysis of LOC_Os10g05490 in rice under cold stress [J]. , 2017, 29(2): 177-185. |
[9] | FANG Min\|yan1,ZHANG Ming2,KONG Wei\|liang1. Evaluation of morphological and growth characteristics of somatic embryo mutants of Zoysia [J]. , 2016, 28(2): 269-. |
[10] | CHENG Chen1,2, WANG Jing1,2, YUAN Wen\|xia1,2, LI Dong\|yue1,2,YANG Yong1,2,YAN Cheng\|qi1,2, CHEN Jian\|ping1,2,*. Research progress of disease\|related genes in rice lesion mimic mutants [J]. , 2015, 27(7): 1294-. |
[11] | SUN Chu1,2,TONG Jie\|peng1,WANG Yan1,PAN Ping\|chuan3,SHEN Sheng\|quan1,*. Physiological properties and ultra\|structure features of an early leaf senescence rice mutant R7954(els)#br# [J]. , 2015, 27(10): 1685-. |
[12] | REN San\|juan,TONG Jie\|peng,WANG Yan,SHEN Sheng\|quan* . Study on the spike development of a spikelet\|rudimentary rice mutant spd\|hp73 [J]. , 2014, 26(5): 1151-. |
[13] | JIN Yang;WANG Yue;YYU Shi-ying;CHEN Xi-feng;MA Bo-jun*. Establishment of embryogenic suspension cell line of rice lesion mimic mutant spl5 [J]. , 2013, 25(3): 0-460. |
[14] | TANG Ning-an;NIU Xiao-wei;ZHANG Yue-jian;SHOU Wei-song;FAN Min;*. Construction of FonSIX6 deletion mutant of Fusarium oxysporum f.sp. niveurn [J]. , 2013, 25(2): 0-292. |
[15] | ZHANG Weihong;ZHU Tingheng;WANG Kun;CUI Zhifeng*. Molecular identification and phenotypic analysis of a Botrytis cinerea mutant defective in cell wall integrity [J]. , 2012, 24(4): 0-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||