Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (11): 2001-2008.DOI: 10.3969/j.issn.1004-1524.2021.11.01
• Crop Science • Previous Articles Next Articles
LI Hongying(
), GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang*(
)
Received:2020-12-11
Online:2021-11-25
Published:2021-11-26
Contact:
LIU Longchang
CLC Number:
LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.11.01
| 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
|---|---|---|---|
| AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
| AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
| AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
| AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
| AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
| AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
| C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
| C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
| U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
Table 1 Sequence of primers
| 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
|---|---|---|---|
| AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
| AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
| AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
| AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
| AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
| AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
| C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
| C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
| U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
Fig.2 Gel electrophoresis detection of PCR amplification products of three target sgRNA expression cassettes M, DL 2000 marker; T1, Target site 1; T2, Target site 2; T3, Target site 3.
Fig.4 PCR amplification detection of hygromycin B gene in T0 transgenic plants with hygromycin B tolerance M, DL 2000 DNA marker; 1-19, Positive seedlings of transgenic lines with hygromycin B tolerance; wt, Wild type.
Fig.5 PCR amplification of AGO2 gene fragments containing editing target sites of selected transgenic lines M,DL 2000 DNA marker; #2-#54, T1 transgenic plants.
| [1] |
USLU V V, WASSENEGGER M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA[J]. Current Opinion in Virology, 2020, 42:18-24.
DOI URL |
| [2] |
DING S W. RNA-based antiviral immunity[J]. Nature Reviews Immunology, 2010, 10(9):632-644.
DOI URL |
| [3] |
ZHU L Z, JIANG H L, SHEONG F K, et al. Understanding the core of RNA interference: the dynamic aspects of Argonaute-mediated processes[J]. Progress in Biophysics and Molecular Biology, 2017, 128:39-46.
DOI URL |
| [4] |
SHEU-GRUTTADAURIA J, MACRAE I J. Structural foundations of RNA silencing by argonaute[J]. Journal of Molecular Biology, 2017, 429(17):2619-2639.
DOI URL |
| [5] |
FÁTYOL K, LUDMAN M, BURGYÁN J. Functional dissection of a plant Argonaute[J]. Nucleic Acids Research, 2016, 44(3):1384-1397.
DOI URL |
| [6] |
FANG X F, QI Y J. RNAi in plants: an argonaute-centered view[J]. The Plant Cell, 2016, 28(2):272-285.
DOI URL |
| [7] |
CARBONELL A, CARRINGTON J C. Antiviral roles of plant ARGONAUTES[J]. Current Opinion in Plant Biology, 2015, 27:111-117.
DOI URL |
| [8] |
BROSSEAU C, MOFFETT P. Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing[J]. The Plant Cell, 2015, 27(6):1742-1754.
DOI URL |
| [9] |
ZHU H L, HU F Q, WANG R H, et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256.
DOI URL |
| [10] |
BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond[J]. Nature Biotechnology, 2016, 34(9):933-941.
DOI URL |
| [11] |
HARRISON M M, JENKINS B V, O’CONNOR-GILES K M, et al. A CRISPR view of development[J]. Genes & Development, 2014, 28(17):1859-1872.
DOI URL |
| [12] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7):1-11. |
| JING R C, LU H. The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7):1-11.(in Chinese with English abstract) | |
| [13] | 郭建秋, 雷全奎, 杨小兰, 等. 植物突变体库的构建及突变体检测研究进展[J]. 河南农业科学, 2010, 39(6):150-155. |
| GUO J Q, LEI Q K, YANG X L, et al. Research progress of plant mutant library construction and mutant detection[J]. Journal of Henan Agricultural Sciences, 2010, 39(6):150-155.(in Chinese) | |
| [14] |
VAUCHERET H. Plant ARGONAUTES[J]. Trends in Plant Science, 2008, 13(7):350-358.
DOI URL |
| [15] |
JEAN M. The multilayer’s control of ARGONAUTE 1 contents[J]. Molecular Plant, 2020, 13(1):1-3.
DOI URL |
| [16] |
ZHANG X M, ZHAO H W, GAO S, et al. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a Golgi-localized SNARE gene, MEMB12[J]. Molecular Cell, 2011, 42(3):356-366.
DOI URL |
| [17] |
HU P, ZHAO H W, ZHU P, et al. Dual regulation of Arabidopsis AGO2 by arginine methylation[J]. Nature Communications, 2019, 10:844.
DOI URL |
| [18] |
WANG H Y, LIU C, REN Y C, et al. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis[J]. Plant Science, 2019, 288:110218.
DOI URL |
| [19] |
XIE X R, MA X L, ZHU Q L, et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249.
DOI URL |
| [20] |
ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes[J]. PLoS One, 2009, 4(5):e5553.
DOI URL |
| [21] |
ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2):641-646.
DOI URL |
| [22] |
WANG X B, JOVEL J, UDOMPORN P, et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(4):1625-1638.
DOI URL |
| [23] |
WU K X, WU Y D, ZHANG C W, et al. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector[J]. Plant Methods, 2021, 17(1):6.
DOI URL |
| [24] |
ODOKONYERO D, MENDOZA M R, ALVARADO V Y, et al. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses[J]. Virology, 2015, 486:209-218.
DOI URL |
| [25] |
MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284.
DOI URL |
| [26] | 原文霞, 王栩鸣, 李冬月, 等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5):685-693. |
| YUAN W X, WANG X M, LI D Y, et al. Application of the technology of CRISPR/Cas9 edit rice gene[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5):685-693.(in Chinese with English abstract) | |
| [27] | ZHENG S Y, LI J, MA L, et al. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15):7549-7558. |
| [28] |
LUDMAN M, BURGYÁN J, FÁTYOL K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses[J]. Scientific Reports, 2017, 7:1010.
DOI URL |
| [1] | ZHENG Cheng, WANG Ying, WANG Jian, GUO Xiao, WANG Baogen, WU Xinyi, ZHU Biao, LI Guojing, WU Xiaohua. Screening and phenotypic analysis of EMS-induced mutants in Lagenaria siceraria [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1914-1923. |
| [2] | ZHU Yan, DING Lan, CHEN Yiqian, HUANG Xiujing, JIANG Weiwei, CHEN Donghong. Identification and functional analysis of CLE gene family in Dendrobium officinale Kimura et Migo [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1583-1590. |
| [3] | ZHOU Xianjie, CHENG Baoku, ZHANG Wenfei. Analysis of Genetic Technology (Precision Breeding) Act in UK and its implications for China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1199-1207. |
| [4] | WANG Lin, YUAN Jianlin, MIAO Chang, MA Yuhan, CAO Sanjie, ZHAO Qin. Construction of POR gene knockout, complementation and overexpression LO2 cell lines and preliminary application as AFB1 exposed model [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 272-283. |
| [5] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
| [6] | JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982. |
| [7] | LANG Chunxiu, LIU Renhu, ZHENG Tao, WANG Fulin, SHI Jianghua, HU Zhanghua, WU Guanting. New dwarf mutants of oilseed rape (Brassica napus L.) induced by chemical mutagenesis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2516-2524. |
| [8] | SUN Shanshan, CHEMI Lhamo, LI Qiang, ZENG Nanfang, ZHENG Cheng, ZHANG Baiyu, YAN Qigui. Construction and biological characteristics of a recombinant pseudorabies virus expressing GP5-M of PRRSV NADC30-like virus strain [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2555-2567. |
| [9] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
| [10] | DING Zhaoxue, WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han. Construction of PK15 cells with porcine miR-22 upstream sequence mutation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1849-1855. |
| [11] | XU Shenping, ZHANG Yan, LIANG Fang, JIANG Suhua, NIU Suyan, CUI Bo, YUAN Xiuyun. Cloning of PhaSEP3 gene in Phalaenopsis and its expression in floral organ mutants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1703-1712. |
| [12] | OU Chun, ZHANG Min, DING Lin, YAO Xiamei, WANG Zelu, PENG Cheng, XU Junfeng. Application and policy regulation of CRISPR/Cas9 gene editing technology in plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1806-1814. |
| [13] | LI Lin, ZHU Xueming, BAO Jiandong, WANG Jiaoyu, LIN Fucheng. Gene editing: past and present [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1091-1102. |
| [14] | FENG Jinlin, XI Xiaoyu, ZHAO Shifeng. Arabidopsis N-terminal acetyltransferase Naa50 is involved in regulation of root cell mitosis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2603-2609. |
| [15] | TAN Xiaojing, WANG Zhonghua, WU Yueyan, ZHENG Ersong, XU Rumeng, CHEN Jianping, WANG Xuming, YAN Chengqi. Application progress of gene editing techniques in rice disease-resistant genes and breeding research [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1982-1990. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||