Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (10): 2121-2131.DOI: 10.3969/j.issn.1004-1524.2022.10.06
• Crop Science • Previous Articles Next Articles
LI Fang1(), LIU Xia1, HUANG Zheng2, HE Yingqin1, SONG Qinfei1, NIU Suzhen*(
)
Received:
2021-11-18
Online:
2022-10-25
Published:
2022-10-26
Contact:
NIU Suzhen
CLC Number:
LI Fang, LIU Xia, HUANG Zheng, HE Yingqin, SONG Qinfei, NIU Suzhen. Change regularity of leaf color of tea plant P113 (Camellia tachangensis F. C. Zhang) by metabolomics[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2121-2131.
Fig.3 Score of principal component analysis A, B and C represented samples in spring, summer and autumn, respectively. The greater the proportion of principal component, the greater the reliability of the sub sample representing the principal component.
Fig.5 Venn diagram between samples in different seasons A, B and C represented spring, summer and autumn. Circles of different colors represented the collection of metabolites in different seasons, and overlapping circles represented the same metabolites in different seasons, and the number indicated the number of metabolites.
Fig.6 Expression of flavonoid in different seasons The ordinate of all histograms in figure A represented the normalized value of the peak (Fold change), and the abscissa A, B and C represented spring, summer and autumn, respectively; In figure B, the ordinate represented the metabolite name, the abscissa represented the peak normalized value, and different colors represented different seasons.
Fig.7 Heat map of correlation between different categories of metabolites The right and lower sides were metabolite category names, the left and upper sides were sample clustering trees, and the legend in the upper left corner was the color range of different r values. The redder the color, the greater the correlation between metabolites, and the bluer the color, the smaller the correlation between metabolites.
[1] | 虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1): 1-8. |
YU F L. Discussion on the originating place and the originating center of tea plant[J]. Journal of Tea Science, 1986, 6(1): 1-8. (in Chinese with English abstract) | |
[2] | 谢孝明, 罗以洪. 中国茶树原产地中心新论[J]. 茶叶通讯, 2021, 48(3): 385-391. |
XIE X M, LUO Y H. New view on the origin center of tea tree in China[J]. Journal of Tea Communication, 2021, 48(3): 385-391. (in Chinese with English abstract) | |
[3] |
张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372.
DOI |
ZHANG W J, RONG J, WEI C L, et al. Domestication origin and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. (in Chinese with English abstract)
DOI |
|
[4] | 朱永兴, 姜爱芹. 咖啡、可可和茶的全球发展比较研究[J]. 茶叶科学, 2010, 30(6): 493-500. |
ZHU Y X, JIANG A Q. Comparation on the development of coffee, cocoa and tea of the world[J]. Journal of Tea Science, 2010, 30(6): 493-500. (in Chinese with English abstract) | |
[5] | 杨兴荣, 矣兵, 李友勇, 等. 紫芽茶树种质资源主要生化成分差异性分析[J]. 山东农业科学, 2015, 47(12): 14-19. |
YANG X R, YI B, LI Y Y, et al. Analysis on differences of major biochemical components of purple-bud tea tree germplasm resources[J]. Shandong Agricultural Sciences, 2015, 47(12): 14-19. (in Chinese with English abstract) | |
[6] | 念波, 段双梅, 石兴云, 等. 6个红紫芽茶14种化学成分含量测定比较[J]. 食品工业, 2020, 41(2): 189-193. |
NIAN B, DUAN S M, SHI X Y, et al. Determination of the contents of 14 components in 6 purple tea shoots[J]. The Food Industry, 2020, 41(2): 189-193. (in Chinese with English abstract) | |
[7] | 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究[D]. 杭州: 浙江大学, 2015. |
LI N N. Physiological, biochemical characteristics and molecular albinism of the albino tea(Camellia sinensis) plant[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[8] | 徐吉祥, 陆望星, 代风玲. 紫芽茶内含成分研究进展与展望[J]. 南方农业, 2018, 12(28): 35-37. |
XU J X, LU W X, DAI F L. Research progress and prospect of components in purple bud-tea[J]. South China Agriculture, 2018, 12(28): 35-37. (in Chinese) | |
[9] | 黄一泓, 刘雅莉, 武文斌, 等. 藏红花花瓣体外抗氧化活性部位的筛选与研究[J]. 天然产物研究与开发, 2013, 25(11): 1489-1493. |
HUANG Y H, LIU Y L, WU W B, et al. Bioactivity-guided fractionation of petals of Crocus sativus and their antioxidant activity investigation[J]. Natural Product Research and Development, 2013, 25(11): 1489-1493. (in Chinese with English abstract) | |
[10] | 陈亚峥, 陈伟文, 曾海文, 等. 原花青素B2对脓毒症大鼠心肌损伤的作用[J]. 中国临床药理学杂志, 2021, 37(20): 2826-2829. |
CHEN Y Z, CHEN W W, ZENG H W, et al. Effect of procyanidin B2 on myocardial injury in septic rats[J]. The Chinese Journal of Clinical Pharmacology, 2021, 37(20): 2826-2829. (in Chinese with English abstract) | |
[11] |
PATTANANANDECHA T, APICHAI S, SIRILUN S, et al. Anthocyanin profile, antioxidant, anti-inflammatory, and antimicrobial against foodborne pathogens activities of purple rice cultivars in northern Thailand[J]. Molecules (Basel, Switzerland), 2021, 26(17): 5234.
DOI URL |
[12] | 曾棋平, 杨丽娜, 吴坤林, 等. 紫茶多酚含量测定及其抗氧化活性研究[J]. 药学服务与研究, 2021, 21(3): 230-233. |
ZENG Q P, YANG L N, WU K L, et al. Determination of polyphenols in purple tea and study on its antioxidant activity[J]. Pharmaceutical Care and Research, 2021, 21(3): 230-233. (in Chinese)
DOI URL |
|
[13] | 方泽基. 黄山紫茶及其制作方法研究[J]. 现代农业科技, 2021(10): 215-217. |
FANG Z J. Study on Huangshan purple tea and its preparation method[J]. Modern Agricultural Science and Technology, 2021(10): 215-217. (in Chinese) | |
[14] | 杨纯婧, 谭礼强, 杨昌银, 等. 高花青素紫芽茶树新品种紫嫣[J]. 中国茶叶, 2020, 42(9): 8-11. |
YANG C J, TAN L Q, YANG C Y, et al. Anthocyanin-rich purple shoots tea cultivar Ziyan[J]. China Tea, 2020, 42(9): 8-11. (in Chinese with English abstract) | |
[15] | 袁景丽, 郑红丽, 梁先利, 等. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1847-1855. |
YUAN J L, ZHENG H L, LIANG X L, et al. Influence of anthocyanin biosynthesis on leaf and fiber color of Gossypium hirsutum L[J]. Scientia Agricultura Sinica, 2021, 54(9): 1847-1855. (in Chinese with English abstract) | |
[16] |
万东璞, 于卓, 吴燕民, 等. 花青素代谢调控植物彩叶研究进展[J]. 中国农业科技导报, 2020, 22(2): 30-38.
DOI |
WAN D P, YU Z, WU Y M, et al. Regulation of anthocyanin metabolism on colored leaves of plants[J]. Journal of Agricultural Science and Technology, 2020, 22(2): 30-38. (in Chinese with English abstract)
DOI |
|
[17] | 安然. 北美栎树叶色变化的生理基础及花青素积累的转录组学初探[D]. 泰安: 山东农业大学, 2020. |
AN R. Physiological basis of leaf coloration and transcriptomic analysis for anthocyanin accumulation in North American oak[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[18] | 汪力. 基于高通量测序的红花玉兰花青素苷合成途径研究[D]. 北京: 北京林业大学, 2019. |
WANG L. The study of anthocyanin biosynthesis pathway in Magnolia wufengensis based on the high-throughput RNA-seq[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
[19] | 邓素芳. 基于RNA-Seq的野生蕉(Musa itinerans)果皮颜色差异形成的分子机制研究[D]. 福州: 福建农林大学, 2018. |
DENG S F. Studies on the molecular mechanism of peel color difference formation based on RNA-seq in the wild banana(Musa itinerans)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese with English abstract) | |
[20] | 李芳, 范乔, 宋勤飞, 等. 66份优选贵州低热河谷茶树种质资源的系统评价[J/OL]. 分子植物育种:1-37. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20211011.1603.004.html. |
LI F, FAN Q, SONG Q F, et al. Systematic evaluation of 66 tea germplasm resources in low heat valley of Guizhou[J/OL]. Molecular Plant Breeding, 1-37.[2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20211011.1603.004.html. | |
[21] |
安红卫, 宋勤飞, 牛素贞. 贵州茶树种质资源遗传多样性、群体结构和遗传分化研究[J]. 浙江农业学报, 2021, 33(7): 1234-1243.
DOI |
AN H W, SONG Q F, NIU S Z. Study on genetic diversity, population structure and genetic differentiation of tea germplasm in Guizhou[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1234-1243. (in Chinese with English abstract) | |
[22] | 黄政, 李芳, 尹杰, 等. 贵州低热河谷地方茶树种质资源基于表型性状的遗传多样性分析[J/OL]. 分子植物育种, 1-28. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.s.20210702.1115.004.html. |
HUANG Z, LI F, YIN J, et al. Genetic diversity analysis based on phenotypic traits of local tea germplasm resources in low heat valley of Guizhou[J/OL]. Molecular Plant Breeding, 1-28. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.s.20210702.1115.004.html. | |
[23] | 杨兴荣, 包云秀, 黄玫. 云南稀有茶树品种“紫娟”的植物学特性和品质特征[J]. 茶叶, 2009, 35(1): 17-18. |
YANG X R, BAO Y X, HUANG M. The botanical and quality characteristics of the tea cultivar “Zi-Juan” in Yunnan Province[J]. Journal of Tea, 2009, 35(1): 17-18. (in Chinese with English abstract) | |
[24] | 张琛, 韩兆岚, 房婉萍, 等. 茶树叶色变异研究进展[J/OL]. 分子植物育种, 1-17. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20210705.1045.006.html. |
ZHANG C, HAN Z L, FANG W P, et al. Research progress of tea leaf color variation[J/OL]. Molecular Plant Breeding, 1-17. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20210705.1045.006.html. | |
[25] |
CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780.
DOI PMID |
[26] |
SHEN J Z, ZOU Z W, ZHANG X Z, et al. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars[J]. Horticulture Research, 2018, 5: 1-14.
DOI URL |
[27] | 田月月. 黄金芽茶树叶色响应光质的生理特性及机制研究[D]. 泰安: 山东农业大学, 2020. |
TIAN Y Y. Mechanism of physiological characteristics of leaf color in Camellia sinensis cv. Huangjinya response to light quality[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[28] | 唐晓波, 刘晓军, 师大亮, 等. 茶叶中叶绿素含量的季节性差异研究[J]. 浙江农业科学, 2009, 50(3): 502-503. |
TANG X B, LIU X J, SHI D L, et al. Study on seasonal difference of chlorophyll content in tea[J]. Journal of Zhejiang Agricultural Sciences, 2009, 50(3): 502-503. (in Chinese) | |
[29] | 黄小霞, 廖森泰, 刘学铭. 三种植物来源花青素在不同环境条件下稳定性的研究[C]//. “亚运食品安全与广东食品产业创新发展”学术研讨会暨2009年广东省食品学会年会论文集, 2009:214-218. |
[30] |
LEX A, GEHLENBORG N, STROBELT H, et al. UpSet: visualization of intersecting sets[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1983-1992.
DOI URL |
[31] |
CONWAY J R, LEX A, GEHLENBORG N. UpSetR: an R package for the visualization of intersecting sets and their properties[J]. Bioinformatics (Oxford, England), 2017, 33(18): 2938-2940.
DOI PMID |
[32] |
WANG L X, PAN D Z, LIANG M, et al. Regulation of anthocyanin biosynthesis in purple leaves of Zijuan tea (Camellia sinensis var. kitamura)[J]. International Journal of Molecular Sciences, 2017, 18(4): 833.
DOI URL |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 601
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 381
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||