Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (10): 2268-2276.DOI: 10.3969/j.issn.1004-1524.2022.10.21
• Food Science • Previous Articles Next Articles
WANG Lifanga(), YE Liangb, XIE Zhongwenc, DANG Xianglib,*(
)
Received:
2022-03-02
Online:
2022-10-25
Published:
2022-10-26
Contact:
DANG Xiangli
CLC Number:
WANG Lifang, YE Liang, XIE Zhongwen, DANG Xiangli. Antibacterial activity of tea antimicrobial peptide extraction and its effect on preservation of chilled meat[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2268-2276.
处理 Treatment | 抑菌圈直径Diameter of inhibition zone/mm | |
---|---|---|
金黄色葡萄球菌 Staphylococcus aureus | 大肠埃希菌 Escherichia coli | |
茶叶抗菌肽TAE | 13.6±0.44 a | 7.9±0.38 a |
乳酸链球菌肽Nisin | 16.2±0.78 a | 4.7±0.42 b |
Table 1 Antibacterial activity of TAE against bacteria
处理 Treatment | 抑菌圈直径Diameter of inhibition zone/mm | |
---|---|---|
金黄色葡萄球菌 Staphylococcus aureus | 大肠埃希菌 Escherichia coli | |
茶叶抗菌肽TAE | 13.6±0.44 a | 7.9±0.38 a |
乳酸链球菌肽Nisin | 16.2±0.78 a | 4.7±0.42 b |
Fig.6 Effect of TAE on total bacterial count of chilled meat Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
[1] | 辛本凯, 王会岩. 抗菌肽在抗菌材料中的研究进展[J]. 吉林医药学院学报, 2021, 42(1): 53-55. |
XIN B K, WANG H Y. Research progress of antimicrobial peptides in antibacterial materials[J]. Journal of Jilin Medical University, 2021, 42(1): 53-55. (in Chinese) | |
[2] |
BROGDEN K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. Nature Reviews Microbiology, 2005, 3(3): 238-250.
DOI PMID |
[3] | BARBOSA PELEGRINI P, DEL SARTO R P, SILVA O N, et al. Antibacterial peptides from plants: what they are and how they probably work[J]. Biochemistry Research International, 2011, 2011: 250349. |
[4] | 田志环. 抗菌肽的结构与功能[J]. 生物学教学, 2008, 33(7): 4-5. |
TIAN Z H. Structure and function of antimicrobial peptides[J]. Biology Teaching, 2008, 33(7): 4-5. (in Chinese) | |
[5] |
THEVISSEN K, KRISTENSEN H H, THOMMA B P H J, et al. Therapeutic potential of antifungal plant and insect defensins[J]. Drug Discovery Today, 2007, 12(21/22): 966-971.
DOI URL |
[6] |
HEGEDÜS N, MARX F. Antifungal proteins: more than antimicrobials?[J]. Fungal Biology Reviews, 2013, 26(4): 132-145.
PMID |
[7] | 周晓馥, 苗璐, 高峰, 等. 利用生物信息学对植物抗菌肽的预测与分析[J]. 生物技术, 2014, 24(3): 91-95. |
ZHOU X F, MIAO L, GAO F, et al. Bioinformatics forecast and analysis of plant antimicrobial peptides[J]. Biotechnology, 2014, 24(3): 91-95. (in Chinese with English abstract) | |
[8] |
NAWROT R, BARYLSKI J, NOWICKI G, et al. Plant antimicrobial peptides[J]. Folia Microbiologica, 2014, 59(3): 181-196.
DOI PMID |
[9] | 魏志文. 绿茶中四种儿茶素单体(EC、EGC、ECG、EGCG)和槲皮素单体分离制备[D]. 合肥: 安徽农业大学, 2009. |
WEI Z W. Separation and preparation of four individual catechins (EC, EGC, ECG, EGCG) and qurecetin monomer from green tea[D]. Hefei: Anhui Agricultural University, 2009. (in Chinese with English abstract) | |
[10] | MO H Z, ZHU Y, CHEN Z M. Microbial fermented tea: a potential source of natural food preservatives[J]. Trends in Food Science & Technology, 2008, 19(3): 124-130. |
[11] |
PERUMALLA A V S, HETTIARACHCHY N S. Green tea and grape seed extracts: potential applications in food safety and quality[J]. Food Research International, 2011, 44(4): 827-839.
DOI URL |
[12] | 王永红, 张淑蓉. 冷鲜肉的保鲜技术研究进展[J]. 粮油食品科技, 2012, 20(1): 48-51. |
WANG Y H, ZHANG S R. Research progress on keeping chilled meat fresh[J]. Science and Technology of Cereals, Oils and Foods, 2012, 20(1): 48-51. (in Chinese with English abstract) | |
[13] | 李新福, 张威, 李超, 等. 不同保鲜剂对冷鲜猪肉品质的影响[J]. 安徽农业科学, 2020, 48(13): 183-188. |
LI X F, ZHANG W, LI C, et al. Effects of different preservatives on storage quality of cold fresh pork[J]. Journal of Anhui Agricultural Sciences, 2020, 48(13): 183-188. (in Chinese) | |
[14] |
XIE Y C, ZHANG Y, XIE Y K, et al. Radio frequency treatment accelerates drying rates and improves vigor of corn seeds[J]. Food Chemistry, 2020, 319: 126597.
DOI URL |
[15] |
LU M Q, HAN J Y, ZHU B Y, et al. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis)[J]. Planta, 2019, 249(2): 363-376.
DOI PMID |
[16] |
DANG X L, TIAN J H, YANG W Y, et al. Bactrocerin-1: a novel inducible antimicrobial peptide from pupae of oriental fruit fly Bactrocera dorsalis Hendel[J]. Archives of Insect Biochemistry and Physiology, 2009, 71(3): 117-129.
DOI URL |
[17] | DANG X L, ZHENG X X, WANG Y S, et al. Antimicrobial peptides from the edible insect Musca domestica and their preservation effect on chilled pork[J]. Journal of Food Processing and Preservation, 2020, 44(3): e14369. |
[18] |
KLUBTHAWEE N, ADISAKWATTANA P, HANPITHAKPONG W, et al. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa[J]. Scientific Reports, 2020, 10: 9117.
DOI URL |
[19] | 段静芸, 徐幸莲, 周光宏. 壳聚糖在冷却鲜猪肉保鲜中的应用研究[J]. 食品工业科技, 2001, 22(4): 26-28. |
DUAN J Y, XU X L, ZHOU G H. Study on the application of chitosan in preservation of chilled fresh pork[J]. Science and Technology of Food Industry, 2001, 22(4): 26-28. (in Chinese with English abstract) | |
[20] |
MAHLAPUU M, BJÖRN C, EKBLOM J. Antimicrobial peptides as therapeutic agents: opportunities and challenges[J]. Critical Reviews in Biotechnology, 2020, 40(7): 978-992.
DOI PMID |
[21] |
MAHLAPUU M, HÅKANSSON J, RINGSTAD L, et al. Antimicrobial peptides: an emerging category of therapeutic agents[J]. Frontiers in Cellular and Infection Microbiology, 2016, 6: 194.
DOI PMID |
[22] | 刘唤明, 孙力军, 王雅玲, 等. 纳豆菌脂肽对金黄色葡萄球菌抑菌机理的研究[J]. 食品工业科技, 2012, 33(11): 109-112. |
LIU H M, SUN L J, WANG Y L, et al. Study on antibacterial mechanism of lipopeptide from Bacillus natto against Staphyloccocus aureus[J]. Science and Technology of Food Industry, 2012, 33(11): 109-112. (in Chinese with English abstract) | |
[23] |
YANG S, LI J, AWEYA J J, et al. Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk[J]. International Journal of Food Microbiology, 2020, 335: 108891.
DOI URL |
[24] | 陈飞龙, 刘渔珠, 彭勃, 等. 抗菌肽F1对金黄色葡萄球菌的胞内作用机制[J]. 食品科学, 2017, 38(6): 36-41. |
CHEN F L, LIU Y Z, PENG B, et al. Intracellular mechanism of action of antimicrobial peptide F1 on Staphylococcus aureus[J]. Food Science, 2017, 38(6): 36-41. (in Chinese with English abstract) | |
[25] | 苏冠芳, 郝刚, 李莉蓉, 等. 抗菌肽buforinⅡ衍生物抑制细菌核酸合成的机制研究[J]. 中国抗生素杂志, 2012, 37(3): 190-195. |
SU G F, HAO G, LI L R, et al. Antibacterial peptides buforinⅡ-analogues on bacteria by inhibition of DNA synthesis[J]. Chinese Journal of Antibiotics, 2012, 37(3): 190-195. (in Chinese with English abstract) | |
[26] |
CARDOSO M H, MENEGUETTI B T, COSTA B O, et al. Nonlytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets[J]. International Journal of Molecular Sciences, 2019, 20(19): 4877.
DOI URL |
[27] | 程述震, 王晓拓, 王志东. 冷鲜肉保鲜技术研究进展[J]. 食品研究与开发, 2017, 38(16): 194-198. |
CHENG S Z, WANG X T, WANG Z D. Research progress on preservation methods for chilled meat[J]. Food Research and Development, 2017, 38(16): 194-198. (in Chinese with English abstract) | |
[28] | 李柯欣. 茶多酚的提取、抑菌作用与抑菌机理研究[D]. 成都: 西华大学, 2017. |
LI K X. Study on extraction, bacteriostasis and bacteriostatic mechanism of tea polyphenols[D]. Chengdu: Xihua University, 2017. (in Chinese with English abstract) | |
[29] | JAY J M. Modern food microbiology[M]. 6th ed. Gaithersburg, MD: Aspen Publishers, 2000. |
[1] | YANG Chun, MENG Zehong, LI Shuai, LIANG Sihui, QIAO Dahe, CHEN Zhengwu. Resistance of 12 tea cultivars to Dendrothrips minowai Priesner and Empoasca Onukii Matsuda and a preliminary identification of resistant components [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1713-1724. |
[2] | YANG Chun, QIAO Dahe, GUO Yan, LIANG Sihui, LIN Kaiqin, CHEN Zhengwu. Analysis into amino acids and theanine contents of 115 tea germplasms and special germplasm resource screening in Guizhou, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1351-1360. |
[3] | ZOU Zhenhao, SUN Yeliang, ZHAO Yubao, LI Xin, ZHANG Liping, ZHANG Lan, DONG Chunwang, FU Jianyu, HAN Wenyan, YAN Peng. Effects of picking flower buds on yield and quality of tea in spring [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1369-1376. |
[4] | GUO Xuesong, TIAN Libo, SHANG Sang. Effect of malonic acid treatment on postharvest storage quality of cowpea [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1529-1536. |
[5] | TANG Xiao, MA Ming. Antibacterial activity and stability of Extracts of four common rice dumplings leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1287-1397. |
[6] | PANG Yajun. Dilemma in transformation of homestead resources, assets and capital and corresponding solutions [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1338-1348. |
[7] | WU Xiaoqing, ZHOU Feifei, YE Ying, HUANG Yanmei, YANG Leiyu, HUANG Haitao, WU Yuanyuan. Analysis of aroma characteristics of Longjing tea made from different tea cultivars [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 437-446. |
[8] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[9] | CAI Jiye, FANG Xiangjun, HAN Yanchao, DING Yuting, CHEN Hangjun, WU Weijie, GAO Haiyan. Effect controlled atmosphere storage on postharvest preservation of Dongkui bayberry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 352-359. |
[10] | ZHANG Peng, YANG Xueyan, HONG Jing, ZHANG Yali, TIAN Xiaojing, ZHANG Fumei, CAO Hong, CHEN Shi’en, MA Zhongren, DING Gongtao, SONG Li, LUO Li. Enrichment of trace elements in soil-tea system in Meitan tea area of Guizhou and origin traceability [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 378-390. |
[11] | FENG Wei, LI Pengpeng, SONG Peng. Heterologous expression and physicochemical characterization of Brassica napus Kunitz protease inhibitor [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 112-119. |
[12] | YUAN Yuejin, HONG Chen, XU Yingying, WANG Dong, ZHANG Man, JING Xuesong. Optimization of carrot vacuum pulsating steam blanching process under combined drying method [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 163-172. |
[13] | XIE Wengang, CHEN Wei, TAN Liqiang, YANG Yang, TANG Qian. Analysis of main biochemical components in new shoots of tea cultivars Emeiwenchun and Chuancha No. 2 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1592-1601. |
[14] | JIA Yangyang, NIE Zongning, LUO Xingyu, YANG Kaihui, HE Chunlei. Study on processing technology of exogenous polyphenol oxidase assisted fermentation of Tibetan tea [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1720-1729. |
[15] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 630
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 519
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||