Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (11): 2542-2552.DOI: 10.3969/j.issn.1004-1524.2022.11.23
• Biosystems Engineering • Previous Articles Next Articles
LIU Mingyong1,2(), HU Chenglong1,2,*(
), XIE Bolin1,2
Received:
2021-06-14
Online:
2022-11-25
Published:
2022-11-29
Contact:
HU Chenglong
CLC Number:
LIU Mingyong, HU Chenglong, XIE Bolin. Simulation and optimization analysis and experiment of split plough based on discrete element method[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2542-2552.
类型 Type | 方程 Equation |
---|---|
圆弧 Arc | |
摆线 Cycloid | |
椭圆 Oval |
Table 1 Equation of guide curve
类型 Type | 方程 Equation |
---|---|
圆弧 Arc | |
摆线 Cycloid | |
椭圆 Oval |
参数 Parameter | 单位 Unit | 数值 Value |
---|---|---|
耕宽 Farming width | mm | 285 |
胫刃线高 Shin line height | mm | 300 |
顶边线最大高度 | mm | 367 |
Maximum height of top edge | ||
翼边线夹角 Wing edge angle | ° | 35 |
导曲线直线段长 | mm | 105 |
Length of straight line of guide curve | ||
安装角 Installation angle | ° | 30 |
切线夹角 Tangent angle | ° | 115 |
Table 2 Plough body parameter table
参数 Parameter | 单位 Unit | 数值 Value |
---|---|---|
耕宽 Farming width | mm | 285 |
胫刃线高 Shin line height | mm | 300 |
顶边线最大高度 | mm | 367 |
Maximum height of top edge | ||
翼边线夹角 Wing edge angle | ° | 35 |
导曲线直线段长 | mm | 105 |
Length of straight line of guide curve | ||
安装角 Installation angle | ° | 30 |
切线夹角 Tangent angle | ° | 115 |
直元线高度 Straight element line height/mm | 元线角 Element line angle/(°) |
---|---|
0 | 46.0 |
50 | 46.5 |
75 | 47.8 |
125 | 51.2 |
175 | 52.3 |
225 | 55.8 |
275 | 57.0 |
325 | 61.5 |
360 | 46.5 |
Table 3 Straight element line and surface element line angle
直元线高度 Straight element line height/mm | 元线角 Element line angle/(°) |
---|---|
0 | 46.0 |
50 | 46.5 |
75 | 47.8 |
125 | 51.2 |
175 | 52.3 |
225 | 55.8 |
275 | 57.0 |
325 | 61.5 |
360 | 46.5 |
Fig.3 3D model diagram of plough body a, Three-dimensional model; b, Front view of plough body A tillage width; h, Shin edge line height; H, Top edge line maximum height; θ, Wing edge line included angle.
项目 Item | 数值 Value |
---|---|
犁体密度 Density of plough/(kg·m-3) | 7 865 |
犁体剪切模量 Shear modulus of plough/Pa | 7×107 |
犁体泊松比 Poisson’s ratio of plough | 0.3 |
土壤颗粒密度Density of soil particles/(kg·m-3) | 2 680 |
土壤剪切模量Shear modulus of soil/Pa | 2.5×107 |
土壤泊松比 Poisson’s ratio of soil | 0.33 |
土壤颗粒半径Radius of soil particle/mm | 3-5 |
土壤-土壤静摩擦因数 | 0.5 |
Coefficient of friction of soil-soil | |
土壤-犁静摩擦因数Coefficient of friction of soil-plough | 0.3 |
土壤-土壤动摩擦因数 | 0.05 |
Coefficient of rolling friction of soil-soil | |
土壤-犁动摩擦因数 | 0.25 |
Coefficient of rolling friction of soil-plough | |
土壤-土壤恢复系数 | 0.6 |
Coefficient of restitution of soil-soil | |
土壤-犁恢复系数 | 0.2 |
Coefficient of restitution of soil-plough | |
耕深 Farming depth/mm | 225 |
耕宽 Farming width/mm | 285 |
Table 4 The simulation parameters
项目 Item | 数值 Value |
---|---|
犁体密度 Density of plough/(kg·m-3) | 7 865 |
犁体剪切模量 Shear modulus of plough/Pa | 7×107 |
犁体泊松比 Poisson’s ratio of plough | 0.3 |
土壤颗粒密度Density of soil particles/(kg·m-3) | 2 680 |
土壤剪切模量Shear modulus of soil/Pa | 2.5×107 |
土壤泊松比 Poisson’s ratio of soil | 0.33 |
土壤颗粒半径Radius of soil particle/mm | 3-5 |
土壤-土壤静摩擦因数 | 0.5 |
Coefficient of friction of soil-soil | |
土壤-犁静摩擦因数Coefficient of friction of soil-plough | 0.3 |
土壤-土壤动摩擦因数 | 0.05 |
Coefficient of rolling friction of soil-soil | |
土壤-犁动摩擦因数 | 0.25 |
Coefficient of rolling friction of soil-plough | |
土壤-土壤恢复系数 | 0.6 |
Coefficient of restitution of soil-soil | |
土壤-犁恢复系数 | 0.2 |
Coefficient of restitution of soil-plough | |
耕深 Farming depth/mm | 225 |
耕宽 Farming width/mm | 285 |
Fig.9 Soil disturbance maps of different types of plough bodies a, Parabolic curved surface longitudinal soil disturbance; b, Elliptical curved surface longitudinal soil disturbance; c, Parabolic curved surface lateral soil disturbance; d, Elliptical curved surface lateral soil disturbance; The number of particles above the surface was marked in Fig. a; The height of uplift is marked in Fig.b.
Fig.10 Soil movement state of different types of plough bodies a, Parabolic surface soil particle velocity distribution status; b, Parabolic surface soil particle velocity direction distribution status; c, Elliptical surface soil particle velocity distribution status; d, Elliptical surface soil particle velocity direction distribution status.
[1] | 陈印军, 易小燕, 方琳娜, 等. 中国耕地资源与粮食增产潜力分析[J]. 中国农业科学, 2016, 49(6): 1117-1131. |
CHEN Y J, YI X Y, FANG L N, et al. Analysis of china’s cultivated land resources and grain yield potential[J]. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131. (in Chinese with English abstract) | |
[2] |
SHMULEVICH I. State of the art modeling of soil-tillage interaction using discrete element method[J]. Soil and Tillage Research, 2010, 111(1): 41-53.
DOI URL |
[3] |
GODWIN R J, O’DOGHERTY M J, SAUNDERS C, et al. A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties, plough geometric factors and ploughing speed[J]. Biosystems Engineering, 2007, 97(1): 117-129.
DOI URL |
[4] |
SONI P, SALOKHE V M, NAKASHIMA H. Modification of a mouldboard plough surface using arrays of polyethylene protuberances[J]. Journal of Terramechanics, 2007, 44(6): 411-422.
DOI URL |
[5] |
BULGAKOV V, PASCUZZI S, ADAMCHUK V, et al. A theoretical study of the limit path of the movement of a layer of soil along the plough mouldboard[J]. Soil and Tillage Research, 2019, 195: 104406.
DOI URL |
[6] |
UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121: 105-117.
DOI URL |
[7] |
UCGUL M, FIELKE J M, SAUNDERS C. 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil and Tillage Research, 2014, 144: 220-227.
DOI URL |
[8] |
UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298-306.
DOI URL |
[9] |
UCGUL M, SAUNDERS C, FIELKE J M. Discrete element modelling of top soil burial using a full scale mouldboard plough under field conditions[J]. Biosystems Engineering, 2017, 160: 140-153.
DOI URL |
[10] | 何永强, 贺俊林, 杨作梅. 犁体曲面离散元仿真试验与参数优化[J]. 农机化研究, 2019, 41(12): 189-193,257. |
HE Y Q, HE J L, YANG Z M. Discrete element simulation and parameter optimization of plow surface[J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 189-193,257. (in Chinese with English abstract) | |
[11] | 耿端阳, 张道林, 王相友. 新编农业机械学[M]. 北京: 国防工业出版社, 2011: 44-46. |
[12] | 杨化伟, 刘利明. 基于SolidWorks的水平直元线犁体曲面参数化设计[J]. 农业装备与车辆工程, 2008, 46(46): 22-26. |
YANG H W, LIU L M. Parametric design of horizontal straight generatrix plough body surface based on SolidWorks[J]. Agricultural Equipment & Vehicle Engineering, 2008, 46(9): 22-26. (in Chinese with English abstract) | |
[13] |
WALTON O R, BRAUN R L. Stress calculations for assemblies of inelastic speres in uniform shear[J]. Acta Mechanica, 1986, 63(1/2/3/4): 73-86.
DOI URL |
[14] |
TAMÁS K, JÓRI I J, MOUAZEN A M. Modelling soil-sweep interaction with discrete element method[J]. Soil and Tillage Research, 2013, 134: 223-231.
DOI URL |
[15] | DAS B M. Advanced soil mechanics[M]. Oxford: Taylor& Francis, 1997. |
[16] |
FIELKE J M. Interactions of the cutting edge of tillage implements with soil[J]. Journal of Agricultural Engineering Research, 1996, 63(1): 61-71.
DOI URL |
[17] |
UCGUL M, FIELKE J M, SAUNDERS C. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling[J]. Information Processing in Agriculture, 2015, 2(2): 130-141.
DOI URL |
[1] | PENG Caiwang, ZHOU Ting, SUN Songlin, XIE Yelin, WEI Yuan. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 814-823. |
[2] | QIN Kuan, LIANG Xiaolong, CAO Chengmao, FANG Liangfei, WU Zhengmin, GE Jun. Design and experiment of tea garden energy-saving ditching blade [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1320-1328. |
[3] | WANG Feng, ZHANG Fengwei, DAI Fei, ZHANG Luhai, ZHAO Wei, YANG Xiaoping. Design and experiment of double layer flat screen type Pinellia ternate harvester [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1946-1955. |
[4] | LI Weining, BAI Xuanbing, LI Bing. Optimization of structural parameters of drum type tea re-dryer [J]. , 2020, 32(2): 348-358. |
[5] | JIN Li\|li1,2,JI Chang\|ying1,2,*,FANG Hui\|min1,2, TAN Ying1,2. Numerical simulation of mixing process of fertilizer particles in continuous mixer of variable rate fertilizer applicator [J]. , 2015, 27(2): 261-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 530
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 320
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||