Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2664-2672.DOI: 10.3969/j.issn.1004-1524.20221812
• Environmental Science • Previous Articles Next Articles
WANG Jianbing1,2(), WANG Jintao3, YAN Kexin3, GUO Xiaolan1, WANG Dun1, DAI Hongwen3
Received:
2022-12-19
Online:
2023-11-25
Published:
2023-12-04
处理 Treatment | pH值 pH value | 有机质含量 Organic matter content/% | 全氮含量 Total N content/ (g·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 全镉含量 Total Cd content/ (mg·kg-1) | 有效镉含量 Available Cd content/ (mg·kg-1) | 全铅含量 Total Pb content/ (mg·kg-1) | 有效铅含量 Available Pb content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
LPb | 6.54 | 2.01 | 1.42 | 67.03 | 131.38 | 0.56 | 0.33 | 31.02 | 5.06 |
MPb | 6.39 | 2.09 | 1.56 | 68.38 | 138.34 | 0.59 | 0.33 | 55.19 | 9.45 |
HPb | 6.50 | 2.24 | 1.60 | 71.58 | 140.56 | 0.58 | 0.34 | 105.56 | 29.30 |
Table 1 Basic physiochemical properties of test soils
处理 Treatment | pH值 pH value | 有机质含量 Organic matter content/% | 全氮含量 Total N content/ (g·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 全镉含量 Total Cd content/ (mg·kg-1) | 有效镉含量 Available Cd content/ (mg·kg-1) | 全铅含量 Total Pb content/ (mg·kg-1) | 有效铅含量 Available Pb content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
LPb | 6.54 | 2.01 | 1.42 | 67.03 | 131.38 | 0.56 | 0.33 | 31.02 | 5.06 |
MPb | 6.39 | 2.09 | 1.56 | 68.38 | 138.34 | 0.59 | 0.33 | 55.19 | 9.45 |
HPb | 6.50 | 2.24 | 1.60 | 71.58 | 140.56 | 0.58 | 0.34 | 105.56 | 29.30 |
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 14.0 cd | 17.9 bc | 21.6 a |
G5 | 27.4 a | 21.6 a | 20.8 a |
G11 | 9.4 f | 12.9 de | 14.7 bcd |
G14 | 13.5 cd | 19.9 ab | 16.7 b |
G16 | 11.8 de | 16.0 cd | 12.4 cde |
G17 | 8.9 f | 8.3 f | 14.2 bcd |
G18 | 20.8 b | 19.0 abc | 11.1 e |
G19 | 10.8 ef | 21.3 ab | 15.2 bc |
G20 | 15.0 c | 11.5 e | 23.2 a |
G25 | 15.1 c | 13.4 de | 12.0 de |
Table 2 Aboveground biomass (fresh weigh) per plant of watercress genotypes under different treatments g
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 14.0 cd | 17.9 bc | 21.6 a |
G5 | 27.4 a | 21.6 a | 20.8 a |
G11 | 9.4 f | 12.9 de | 14.7 bcd |
G14 | 13.5 cd | 19.9 ab | 16.7 b |
G16 | 11.8 de | 16.0 cd | 12.4 cde |
G17 | 8.9 f | 8.3 f | 14.2 bcd |
G18 | 20.8 b | 19.0 abc | 11.1 e |
G19 | 10.8 ef | 21.3 ab | 15.2 bc |
G20 | 15.0 c | 11.5 e | 23.2 a |
G25 | 15.1 c | 13.4 de | 12.0 de |
Fig.1 Biomass response to stress (BRS) of watercress genotypes under different treatments ns, * and ** indicete that the difference of aboveground biomass between the levels of HPb and LPb is not significant (P>0.05), significant at P<0.05 and significant at P<0.01, respectively.
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 0.047 b | 0.075 b | 0.092 a |
G5 | 0.066 a | 0.085 a | 0.084 a |
G11 | 0.018 de | 0.043 d | 0.039 bc |
G14 | 0.029 cd | 0.029 ef | 0.026 c |
G16 | 0.011 e | 0.033 de | 0.029 c |
G17 | 0.033 c | 0.060 c | 0.055 b |
G18 | 0.019 de | 0.027 ef | 0.029 c |
G19 | 0.033 c | 0.040 d | 0.036 c |
G20 | 0.021 de | 0.021 f | 0.029 c |
G25 | 0.022 cde | 0.026 ef | 0.056 b |
Table 3 Cd content (based on dry weigh) in aboveground part of watercress genotypes under different treatments mg·kg-1
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 0.047 b | 0.075 b | 0.092 a |
G5 | 0.066 a | 0.085 a | 0.084 a |
G11 | 0.018 de | 0.043 d | 0.039 bc |
G14 | 0.029 cd | 0.029 ef | 0.026 c |
G16 | 0.011 e | 0.033 de | 0.029 c |
G17 | 0.033 c | 0.060 c | 0.055 b |
G18 | 0.019 de | 0.027 ef | 0.029 c |
G19 | 0.033 c | 0.040 d | 0.036 c |
G20 | 0.021 de | 0.021 f | 0.029 c |
G25 | 0.022 cde | 0.026 ef | 0.056 b |
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 0.107 c | 0.087 de | 0.180 b |
G5 | 0.125 bc | 0.167 b | 0.181 b |
G11 | 0.185 ab | 0.074 e | 0.191 ab |
G14 | 0.149 bc | 0.113 cde | 0.196 ab |
G16 | 0.123 bc | 0.082 de | 0.150 b |
G17 | 0.164 abc | 0.132 bcd | 0.170 b |
G18 | 0.182 ab | 0.082 de | 0.229 ab |
G19 | 0.222 a | 0.232 a | 0.230 ab |
G20 | 0.221 a | 0.143 bc | 0.276 a |
G25 | 0.142 bc | 0.079 e | 0.169 b |
Table 4 Pb content (based on dry weigh) in aboveground part of watercress genotypes under different treatments mg·kg-1
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 0.107 c | 0.087 de | 0.180 b |
G5 | 0.125 bc | 0.167 b | 0.181 b |
G11 | 0.185 ab | 0.074 e | 0.191 ab |
G14 | 0.149 bc | 0.113 cde | 0.196 ab |
G16 | 0.123 bc | 0.082 de | 0.150 b |
G17 | 0.164 abc | 0.132 bcd | 0.170 b |
G18 | 0.182 ab | 0.082 de | 0.229 ab |
G19 | 0.222 a | 0.232 a | 0.230 ab |
G20 | 0.221 a | 0.143 bc | 0.276 a |
G25 | 0.142 bc | 0.079 e | 0.169 b |
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 3.483 b | 5.329 b | 6.641 a |
G5 | 4.878 a | 6.098 a | 6.042 a |
G11 | 1.320 de | 3.070 d | 2.831 bc |
G14 | 2.163 cd | 2.062 fg | 1.907 c |
G16 | 0.849 e | 2.353 ef | 2.117 c |
G17 | 2.438 c | 4.256 c | 3.934 b |
G18 | 1.443 de | 1.893 fg | 2.109 c |
G19 | 2.452 c | 2.866 de | 2.577 c |
G20 | 1.542 de | 1.475 g | 2.043 c |
G25 | 1.638 cde | 1.873 fg | 4.045 b |
Table 5 Cd accumulation factor of watercress genotypes under different treatments
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 3.483 b | 5.329 b | 6.641 a |
G5 | 4.878 a | 6.098 a | 6.042 a |
G11 | 1.320 de | 3.070 d | 2.831 bc |
G14 | 2.163 cd | 2.062 fg | 1.907 c |
G16 | 0.849 e | 2.353 ef | 2.117 c |
G17 | 2.438 c | 4.256 c | 3.934 b |
G18 | 1.443 de | 1.893 fg | 2.109 c |
G19 | 2.452 c | 2.866 de | 2.577 c |
G20 | 1.542 de | 1.475 g | 2.043 c |
G25 | 1.638 cde | 1.873 fg | 4.045 b |
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 0.043 b | 0.019 cd | 0.019 cde |
G5 | 0.043 b | 0.038 ab | 0.020 bcde |
G11 | 0.074 a | 0.016 d | 0.023 abcde |
G14 | 0.056 ab | 0.024 cd | 0.024 abcd |
G16 | 0.044 b | 0.017 d | 0.016 e |
G17 | 0.055 ab | 0.027 cd | 0.017 de |
G18 | 0.049 b | 0.016 d | 0.026 abc |
G19 | 0.075 a | 0.047 a | 0.027 ab |
G20 | 0.071 a | 0.029 bc | 0.028 a |
G25 | 0.047 b | 0.017 d | 0.023 abcde |
Table 6 Pb accumulation factor of watercress genotypes under different treatments
基因型Genotype | LPb | MPb | HPb |
---|---|---|---|
G4 | 0.043 b | 0.019 cd | 0.019 cde |
G5 | 0.043 b | 0.038 ab | 0.020 bcde |
G11 | 0.074 a | 0.016 d | 0.023 abcde |
G14 | 0.056 ab | 0.024 cd | 0.024 abcd |
G16 | 0.044 b | 0.017 d | 0.016 e |
G17 | 0.055 ab | 0.027 cd | 0.017 de |
G18 | 0.049 b | 0.016 d | 0.026 abc |
G19 | 0.075 a | 0.047 a | 0.027 ab |
G20 | 0.071 a | 0.029 bc | 0.028 a |
G25 | 0.047 b | 0.017 d | 0.023 abcde |
[1] | CRUZ R M S, VIEIRA M C, SILVA C L M. Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale)[J]. Journal of Food Engineering, 2006, 72(1): 8-15. |
[2] | MAO Y B, TAN H F, WANG M M, et al. Research progress of soil microorganisms in response to heavy metals in rice[J]. Journal of Agricultural and Food Chemistry, 2022, 70(28): 8513-8522. |
[3] | 王艳敏, 周鸿, 熊丽, 等. 2013—2015年江西省蔬菜中重金属污染状况调查及分析[J]. 实验与检验医学, 2020, 38(5): 853-856. |
WANG Y M, ZHOU H, XIONG L, et al. Investigation and analysis of heavy metal pollution in vegetables in Jiangxi Province from 2013 to 2015[J]. Experimental and Laboratory Medicine, 2020, 38(5): 853-856. (in Chinese) | |
[4] | 程亚琪, 闫兆风, 王克波. 2016—2018年威海市蔬菜中铅、镉污染状况调查[J]. 预防医学论坛, 2020, 26(7): 496-498. |
CHENG Y Q, YAN Z F, WANG K B. Survey on lead and cadmium contamination of vegetables, Weihai City, 2016-2018[J]. Preventive Medicine Tribune, 2020, 26(7): 496-498. (in Chinese with English abstract) | |
[5] | 杨丽, 李杉, 袁蒲, 等. 2013—2014年河南省新鲜蔬菜中重金属污染状况调查[J]. 中国卫生产业, 2019, 16(2): 143-147. |
YANG L, LI S, YUAN P, et al. Investigation on heavy metal pollution in the fresh vegetables in Henan Province from 2013 to 2014[J]. China Health Industry, 2019, 16(2): 143-147. (in Chinese with English abstract) | |
[6] | 秦丽, 吴中道, 沈适存, 等. 杭州市余杭区蔬菜产地重金属污染的调查[J]. 浙江农业科学, 2018, 59(11): 2123-2124. |
QIN L, WU Z D, SHEN S C, et al. Investigation of heavy metal pollution in vegetables producing area in Yuhang District, Hangzhou[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(11): 2123-2124. (in Chinese) | |
[7] | 王凯, 霍星华, 杨丽梅, 等. 广东省佛山市郊区部分蔬菜地土壤重金属污染调查[J]. 佛山科学技术学院学报(自然科学版), 2018, 36(2): 86-88. |
WANG K, HUO X H, YANG L M, et al. Investigation on heavy metal pollution in vegetable fields in suburb of Foshan City, Guangdong Province[J]. Journal of Foshan University(Natural Science Edition), 2018, 36(2): 86-88. (in Chinese with English abstract) | |
[8] | 丘露, 刘敏超, 刘雨晴, 等. 江门市农田土壤蔬菜重金属污染调查分析[J]. 广东化工, 2017, 44(12): 18-19. |
QIU L, LIU M C, LIU Y Q, et al. Investigation and analysis of heavy metal pollution in the soil of vegetable cropland in Jiangmen[J]. Guangdong Chemical Industry, 2017, 44(12): 18-19. (in Chinese with English abstract) | |
[9] | 西洋菜“喝”黑水重金属超标[EB/OL]. (2007-02-09) [2022-12-19]. https://news.sina.com.cn/c/2007-02-09/150111206771s.shtml. |
[10] | ZHOU Y H, XUE M, YANG Z Y, et al. High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk[J]. Frontiers of Environmental Science & Engineering, 2013, 7(2): 219-230. |
[11] | GUO J J, TAN X A, FU H L, et al. Selection for Cd pollution-safe cultivars of Chinese kale (Brassica alboglabra L. H. bailey) and biochemical mechanisms of the cultivar-dependent Cd accumulation involving in Cd subcellular distribution[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 1923-1934. |
[12] | HE C T, ZHOU Y H, HUANG Y Y, et al. Different proteomic processes related to the cultivar-dependent cadmium accumulation of Amaranthus gangeticus[J]. Journal of Agricultural and Food Chemistry, 2018, 66(5): 1085-1095. |
[13] | WANG J L, YUAN J G, YANG Z Y, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica forsk.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942-8949. |
[14] | WANG J B, SU L Y, YANG J Z, et al. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress (Nasturtium officinale L. R. Br.)[J]. Plant and Soil, 2015, 396(1): 325-337. |
[15] | QIU Q, WANG Y T, YANG Z Y, et al. Responses of different Chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead exposure: screening for Cd+Pb pollution-safe cultivars[J]. CLEAN: Soil, Air, Water, 2011, 39(11): 925-932. |
[16] | CUI Y J, ZHU Y G, ZHAI R H, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China[J]. Environment International, 2004, 30(6): 785-791. |
[17] | 贾超华, 颜新培, 龚昕, 等. 镉超标耕地蔬菜重金属污染调查与健康风险评价[J]. 中国农学通报, 2016, 32(5): 106-112. |
JIA C H, YAN X P, GONG X, et al. Heavy-metal pollution investigation and health risk assessment for vegetables in cadmium exceeded cultivated land[J]. Chinese Agricultural Science Bulletin, 2016, 32(5): 106-112. (in Chinese with English abstract) | |
[18] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[19] | YU H, WANG J L, FANG W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment, 2006, 370(2/3): 302-309. |
[20] | LINDSAY W L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42(3): 421-428. |
[21] | ZHU Y, YU H, WANG J L, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn)[J]. Journal of Agricultural and Food Chemistry, 2007, 55(3): 1045-1052. |
[22] | 刘颖茹, 陈同斌, 黄泽春, 等. 野外条件下土壤砷浓度对蜈蚣草砷富集特征的影响[J]. 环境科学, 2005, 26(5): 181-186. |
LIU Y R, CHEN T B, HUANG Z C, et al. As-hyperaccumulation of Pteris vittata L. as influenced by As concentrations in soils of contaminated fields[J]. Environmental Science, 2005, 26(5): 181-186. (in Chinese with English abstract) | |
[23] | 苏徳纯, 黄焕忠. 油菜作为超累积植物修复镉污染土壤的潜力[J]. 中国环境科学, 2002, 22(1): 48-51. |
SU D C, HUANG H Z. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil[J]. China Environmental Science, 2002, 22(1): 48-51. (in Chinese with English abstract) | |
[24] | DAI H W, YANG Z Y, XIN J L. Genotype variation in Cd accumulation and chemical forms and histochemical distribution of Cd in low- and high-Cd cultivars of Chinese leaf mustard[J]. Fresenius Environmental Bulletin, 2012, 21(9A): 2746-2757. |
[25] | TOMSETT A B, THURMAN D A. Molecular biology of metal tolerances of plants[J]. Plant, Cell & Environment, 1988, 11(5): 383-394. |
[26] | 武淑华, 韩爱民, 蔡继红, 等. 蔬菜中重金属含量与土壤质量的关系[J]. 长江蔬菜, 2002(S1): 41-43. |
WU S H, HAN A M, CAI J H, et al. Relationship between heavy metal content in vegetables and soil quality[J]. Journal of Changjiang Vegetables, 2002(S1): 41-43. (in Chinese with English abstract) | |
[27] | AN Y J, KIM Y M, KWON T I, et al. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation[J]. Science of the Total Environment, 2004, 326(1/2/3): 85-93. |
[28] | 吕建波, 徐应明, 贾堤, 等. 土壤镉、铅污染对油菜生长行为及重金属累积效应的影响[J]. 天津城市建设学院学报, 2005, 11(2): 107-110. |
LÜ J B, XU Y M, JIA D, et al. Effect of Cd-Pb pollution on cole growth behavior and its accumulation effect of heavy metals in soil[J]. Journal of Tianjin Institute of Urban Construction, 2005, 11(2): 107-110. (in Chinese with English abstract) | |
[29] | SERRANO S, GARRIDO F, CAMPBELL C G, et al. Competitive sorption of cadmium and lead in acid soils of Central Spain[J]. Geoderma, 2005, 124(1/2): 91-104. |
[30] | 黎佳佳, 胡红青, 付庆灵, 等. Cd Pb单一与复合污染对辣椒生物量及重金属残留的影响[J]. 农业环境科学学报, 2006, 25(1): 49-53. |
LI J J, HU H Q, FU Q L, et al. Impact of single cadmium, lead and their combination pollution on pepper biomass and residues of heavy metals[J]. Journal of Agro-Environment Science, 2006, 25(1): 49-53. (in Chinese with English abstract) | |
[31] | LIN Q, CHEN Y X, CHEN H M, et al. Chemical behavior of Cd in rice rhizosphere[J]. Chemosphere, 2003, 50(6): 755-761. |
[32] | MADYIWA S. Modelling lead and cadmium uptake by star grass under irrigation with treated wastewater[D]. Hatfield, South Africa: University of Pretoria, 2006. |
[33] | 贺玉姣, 刘兴华, 蔡庆生. C4植物甜高粱和玉米幼苗对Zn胁迫的响应差异[J]. 生态环境, 2008, 17(5): 1839-1842. |
HE Y J, LIU X H, CAI Q S. Different responses of C4 plants Sorghum bicolor and Zea mays to excess zinc stress during seedling stage[J]. Ecology and Environment, 2008, 17(5): 1839-1842. (in Chinese with English abstract) | |
[34] | 赵小蓉, 杨谢, 陈光辉, 等. 成都平原区不同蔬菜品种对重金属富集能力研究[J]. 西南农业学报, 2010, 23(4): 1142-1146. |
ZHAO X R, YANG X, CHEN G H, et al. Assessment of heavy metal enrichment in vegetables of Chengdu plain[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(4): 1142-1146. (in Chinese with English abstract) | |
[35] | 高宗军, 成世才, 代杰瑞, 等. 山东省鱼台地区蔬菜重金属污染现状及选择性种植研究[J]. 安徽农业科学, 2010, 38(7): 3685-3687. |
GAO Z J, CHENG S C, DAI J R, et al. Heavy metal pollution status of vegetable cultivation in Yutai, Shandong and study on the selective cultivation[J]. Journal of Anhui Agricultural Sciences, 2010, 38(7): 3685-3687. (in Chinese with English abstract) | |
[36] | 龚玉莲, 杨中艺, 陈爱葵, 等. 蕹菜镉积累品种根际土壤水溶性有机质的结构特征研究[J]. 中山大学学报(自然科学版), 2015, 54(4): 121-126. |
GONG Y L, YANG Z Y, CHEN A K, et al. Structural characteristics of dissolved organic matter in the rhizosphere soil of water spinach cultivars differing in Cd accumulation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(4): 121-126. (in Chinese with English abstract) | |
[37] | XUE M, ZHOU Y H, YANG Z Y, et al. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)[J]. Frontiers of Environmental Science & Engineering, 2014, 8(2): 226-238. |
[1] | XIAO Jiachang, LEI Fengyun, GE Sang, MA Junying, HE Maolin, LI Yanwen, ZHENG Yangxia. Effects of exogenous spraying of amino acid fertilizer on growth and selenium uptake of watercress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1638-1647. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 428
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||