Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 79-89.DOI: 10.3969/j.issn.1004-1524.2023.01.09
• Horticultural Science • Previous Articles Next Articles
LIN Dongpu(), ZANG Yaoqiang, ZHANG Xiaopeng, ZHOU Xuzixin, MA Jun(
)
Received:
2022-03-28
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
LIN Dongpu, ZANG Yaoqiang, ZHANG Xiaopeng, ZHOU Xuzixin, MA Jun. Screening of upstream regulators of AbF3'5'H gene in Ananas comosus var. bracteatus[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 79-89.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.01.09
引物名称 Primer name | 引物序列 Primer sequence(5'→3') |
---|---|
AbF3'5'H-F | GGACGTTATCGTCCTCCTACG |
AbF3'5'H-R | CGGCACAGTCTTTTGTAGCG |
Pr F3'5'H-A-F | TAAGTCCATTTGAAACAGAA |
Pr F3'5'H-A-R | TTTGTGAAGATTAAGAAGGC |
Pr F3'5'H-B-F | TTAAAATTCAAATGACTGTCCAAAA |
Pr F3'5'H-B-R | TTTTGGACAGTCATTTGAATTTTAA |
F3'5'H-F | CCCGCATCATCATAACCAGC |
F3'5'H-R | GCTTCAGGGAATCAGGGTGG |
Table 1 The sequences of primers
引物名称 Primer name | 引物序列 Primer sequence(5'→3') |
---|---|
AbF3'5'H-F | GGACGTTATCGTCCTCCTACG |
AbF3'5'H-R | CGGCACAGTCTTTTGTAGCG |
Pr F3'5'H-A-F | TAAGTCCATTTGAAACAGAA |
Pr F3'5'H-A-R | TTTGTGAAGATTAAGAAGGC |
Pr F3'5'H-B-F | TTAAAATTCAAATGACTGTCCAAAA |
Pr F3'5'H-B-R | TTTTGGACAGTCATTTGAATTTTAA |
F3'5'H-F | CCCGCATCATCATAACCAGC |
F3'5'H-R | GCTTCAGGGAATCAGGGTGG |
Fig.2 Gel electrophoresis of full length sequence cloning of AbF3'5'H gene (A) and three dimensional structure of AbF3'5'H protein (B) M, DL2000 marker.1-4 were products amplified by PCR.
顺式作用元件 Cis-acting elements | 生物学功能 Biological function | 出现次数 Emergency times |
---|---|---|
TATA-box | -30位置附近核心启动子转录起始位点Transcription start point-30 core promoter element | 93 |
RY-element | 种子特异性元件Seed specific element | 1 |
ABRE | 脱落酸响应元件Abscisic acid response element | 8 |
LTR | 低温响应元件Low temperature response element | 3 |
MYB | MYB结合位点MYB binding site | 5 |
AT1-motif | 光响应的部分元件Some components that respond to light | 2 |
CAAT-box | 启动子和增强子共同作用顺式元件Regulatory elements for promoters and enhancers | 10 |
Box 4 | 光响应的保守DNA模块的一部分Part of the conserved DNA module of the photoresponsive element | 2 |
G-Box | 参与光响应顺式元件Cis elements participating in photoresponse | 5 |
TCA-element | 水杨酸响应元件Salicylic acid response element | 3 |
O2-site | 醇溶蛋白代谢调节元件Cis-acting regulatory elements related to gliadin metabolism | 1 |
GT1-motif | 光响应元件Photoresponsive element | 2 |
WUN-motif | 创伤反应元件Wound response element | 1 |
ARE | 厌氧响应元件Anaerobic response element | 9 |
circadian | 昼夜节律控制调节元件Circadian rhythm control regulating element | 1 |
Table 2 The cis-acting elements of AbF3'5'H promoter of Ananas comosus var. bracteatus
顺式作用元件 Cis-acting elements | 生物学功能 Biological function | 出现次数 Emergency times |
---|---|---|
TATA-box | -30位置附近核心启动子转录起始位点Transcription start point-30 core promoter element | 93 |
RY-element | 种子特异性元件Seed specific element | 1 |
ABRE | 脱落酸响应元件Abscisic acid response element | 8 |
LTR | 低温响应元件Low temperature response element | 3 |
MYB | MYB结合位点MYB binding site | 5 |
AT1-motif | 光响应的部分元件Some components that respond to light | 2 |
CAAT-box | 启动子和增强子共同作用顺式元件Regulatory elements for promoters and enhancers | 10 |
Box 4 | 光响应的保守DNA模块的一部分Part of the conserved DNA module of the photoresponsive element | 2 |
G-Box | 参与光响应顺式元件Cis elements participating in photoresponse | 5 |
TCA-element | 水杨酸响应元件Salicylic acid response element | 3 |
O2-site | 醇溶蛋白代谢调节元件Cis-acting regulatory elements related to gliadin metabolism | 1 |
GT1-motif | 光响应元件Photoresponsive element | 2 |
WUN-motif | 创伤反应元件Wound response element | 1 |
ARE | 厌氧响应元件Anaerobic response element | 9 |
circadian | 昼夜节律控制调节元件Circadian rhythm control regulating element | 1 |
[1] | 何业华, 胡中沂, 马均, 等. 凤梨类植物的种质资源与分类[J]. 经济林研究, 2009, 27(3): 102-107. |
HE Y H, HU Z Y, MA J, et al. Germplasm resources and taxonomy of bromeliad[J]. Nonwood Forest Research, 2009, 27(3): 102-107. (in Chinese with English abstract) | |
[2] | 张智, 王炜勇, 张飞, 等. 观赏凤梨种质资源及遗传育种研究进展[J]. 植物遗传资源学报, 2019, 20(3): 508-520. |
ZHANG Z, WANG W Y, ZHANG F, et al. Advances in research on genetic resources and breeding of ornamental bromeliads[J]. Journal of Plant Genetic Resources, 2019, 20(3): 508-520. (in Chinese with English abstract) | |
[3] | 何业华, 方少秋, 胡中沂, 等. 菠萝体细胞胚发育过程的形态学和解剖学研究[J]. 园艺学报, 2012, 39(1): 57-63. |
HE Y H, FANG S Q, HU Z Y, et al. Morphological and anatomical analysis of pineapple somatic embryogenesis[J]. Acta Horticulturae Sinica, 2012, 39(1): 57-63. (in Chinese with English abstract) | |
[4] | 朱雪云, 陈利萍. 植物嵌合体的研究与应用[J]. 核农学报, 2010, 24(6): 1185-1191. |
ZHU X Y, CHEN L P. Studies and applications of plant chimeras[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1185-1191. (in Chinese with English abstract) | |
[5] |
TA-NAKA Y, BRUGLIERA F. Flower colour and cytochromes P450[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1612): 20120432.
DOI URL |
[6] | HOLTON T A. Modification of flower colour via manipulation of P450 gene expression in transgenic plants[J]. Journal of Ophthalmology, 1995, 12(3/4): 359-368. |
[7] |
TANAKA Y, TSUDA S, KUSUMI T. Metabolic engineering to modify flower color[J]. Plant and Cell Physiology, 1998, 39(11): 1119-1126.
DOI URL |
[8] | 孟丽, 戴思兰. F3'5'H基因与蓝色花的形成[J]. 分子植物育种, 2004, 2(3): 413-420. |
MENG L, DAI S L. F3'5'H genes regulation and blue flowers formation[J]. Molecular Plant Breeding, 2004, 2(3): 413-420. (in Chinese with English abstract) | |
[9] | HOLTON T A, BRUGLIERA F, TANAKA Y. Cloning and expression of flavonol synthase from Petunia hybrida[J]. PLoS One, 1993, 4(6): 1003-1010. |
[10] | OKINAKA Y, SHIMADA Y, NAKANO-SHIMADA R, et al. Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3', 5'-hydroxylase cDNA from Campanula medium[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(1): 161-165. |
[11] |
ZHANG H L, YANG B, LIU J, et al. Analysis of structural genes and key transcription factors related to anthocyanin biosynthesis in potato tubers[J]. Scientia Horticulturae, 2017, 225: 310-316.
DOI URL |
[12] |
AGUILAR-BARRAGÁN A, OCHOA-ALEJO N. Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit[J]. Biologia Plantarum, 2014, 58(3): 567-574.
DOI URL |
[13] |
FOGELMAN E, TANAMI S, GINZBERG I. Anthocyanin synthesis in native and wound periderms of potato[J]. Physiologia Plantarum, 2015, 153(4): 616-626.
DOI URL |
[14] | 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报, 2021, 37(33): 112-119. |
WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. (in Chinese with English abstract) | |
[15] | 郭育强, 刘姣, 符少萍, 等. MeCWINV6酵母单杂交文库构建及其调控基因筛选[J]. 分子植物育种, 2016, 14(10): 2777-2784. |
GUO Y Q, LIU J, FU S P, et al. Constructing yeast one-hybrid library and screening the potential regulator of MeCWINV6 in cassava[J]. Molecular Plant Breeding, 2016, 14(10): 2777-2784. (in Chinese with English abstract) | |
[16] | 郭荣荣, 林玲, 周思泓, 等. 夏黑葡萄VlTFL1A基因酵母单杂交文库构建及其上游基因的筛选[J]. 西南农业学报, 2018, 31(8): 1578-1583. |
GUO R R, LIN L, ZHOU S H, et al. Yeast one-hybrid library construction and upstream regulator screening of VlTFL1A in ‘Summer Black’ grape (Vitis labrusca × V. vinifera)[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8): 1578-1583. (in Chinese with English abstract) | |
[17] | 李晓雪. 应用酵母单杂交技术筛选柿DkPDC2互作转录因子的研究[D]. 武汉: 华中农业大学, 2018. |
LI X X. Screening transcription factor interacted with DkPDC2 in persimmon by yeast one hybrid system[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[18] | 陈子凡, 董莹, 何思东, 等. 蓝莓及其提取物中花青素检测方法的研究[J]. 粮食与食品工业, 2021(3):69-72. |
CHEN Z F, DONG Y, HE S D, et al. Research progress on the detection methods of anthocyanins in blueberry[J]. Cereal & Food Industry, 2021(3):69-72. (in Chinese with English abstract) | |
[19] | FENG L J, WANG J T, MAO M Q, et al. The highly continuous reference genome of a leaf-chimeric red pineapple (Ananas comosus var. bracteatus f. tricolor) provides insights into elaboration of leaf color[J]. G3 (Bethesda, Md ), 2022, 12(2): jkab452. |
[20] |
龚伟伟, 赵懿琛, 罗显麟, 等. 花烟草NaD1基因的表达及其启动子序列分析[J]. 浙江农业学报, 2022, 34(2): 232-239.
DOI |
GONG W W, ZHAO Y C, LUO X L, et al. Expression and promoter sequence analysis of NaD1 gene in Nicotiana alata[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 232-239. (in Chinese with English abstract) | |
[21] |
BERARDI A E, ESFELD K, JÄGGI L, et al. Complex evolution of novel red floral color in Petunia[J]. The Plant Cell, 2021, 33(7): 2273-2295.
DOI URL |
[22] |
SEITZ C, AMERES S, FORKMANN G. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase[J]. FEBS Letters, 2007, 581(18): 3429-3434.
DOI URL |
[23] | 张淑珍, 闫晓飞, 张传忠, 等. 植物BTB/POZ蛋白及其抗病性研究进展[J]. 大豆科学, 2019, 38(2): 311-316. |
ZHANG S Z, YAN X F, ZHANG C Z, et al. Progress in the studies of plant BTB/POZ protein and the disease resistance[J]. Soybean Science, 2019, 38(2): 311-316. (in Chinese with English abstract) | |
[24] |
HE Y M, LIU K K, ZHANG H X, et al. Contribution of CaBPM4, a BTB domain-containing gene, to the response of pepper to Phytophthora capsici infection and abiotic stresses[J]. Agronomy, 2019, 9(8): 417.
DOI URL |
[25] |
ZHANG C Z, GAO H, SUN Y, et al. The BTB/POZ domain protein GmBTB/POZ promotes the ubiquitination and degradation of the soybean AP2/ERF-like transcription factor GmAP2 to regulate the defense response to Phytophthora sojae[J]. Journal of Experimental Botany, 2021, 72(22): 7891-7908.
DOI URL |
[26] |
GUAN X, ZHAO H Q, XU Y, et al. Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype[J]. Protoplasma, 2011, 248(2): 415-423.
DOI URL |
[27] | NUNES DA SILVA M, CARVALHO S M P, RODRIGUES A M, et al. Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae[J]. Plant, Cell & Environment, 2022, 45(2): 528-541. |
[28] |
ZHOU B J, WANG X P, WANG Y J. cDNA cloning, expression, protein purification, and characterization of a novel glyoxal oxidase related gene from Vitis pseudoreticulata[J]. Biologia Plantarum, 2007, 51(3): 458-466.
DOI URL |
[29] |
LAMB C, DIXON R A. The oxidative burst in plant disease resistance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275.
PMID |
[30] |
REA G, METOUI O, INFANTINO A, et al. Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion[J]. Plant Physiology, 2002, 128(3): 865-875.
DOI URL |
[31] |
栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2): 7-13.
DOI |
LI Z Y, LONG R C, ZHANG T J, et al. Research progress on plant heat shock protein[J]. Biotechnology Bulletin, 2016, 32(2): 7-13. (in Chinese with English abstract) | |
[32] |
SHEN J Z, ZHANG D Y, ZHOU L, et al. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. ‘Suchazao’ exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways[J]. Tree Physiology, 2019, 39(9): 1583-1599.
DOI URL |
[33] |
MORI K, GOTO-YAMAMOTO N, KITAYAMA M, et al. Loss of anthocyanins in red-wine grape under high temperature[J]. Journal of Experimental Botany, 2007, 58(8): 1935-1945.
DOI PMID |
[34] | 周徐子鑫, 杨威, 毛美琴, 等. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选[J]. 园艺学报, 2022, 49(5): 1081-1091. |
ZHOU X Z X, YANG W, MAO M Q, et al. Identification of pigment components and key genes in carotenoid pathway in mutants of chimeric Ananas comosus var. bracteatus[J]. Acta Horticulturae Sinica, 2022, 49(5): 1081-1091. (in Chinese with English abstract) | |
[35] | 余三淼. 红苞凤梨嵌合叶片绿白组织光合作用及过氧化系统差异研究[D]. 雅安: 四川农业大学, 2018. |
YU S M. Study on the differences of photosynthesis and peroxidation system in the green and white tissues of Ananas comosus Var. Bracteatus[D]. Ya’an: Sichuan Agricultural University, 2018. (in Chinese with English abstract) | |
[36] | 洪艳, 武宇薇, 宋想, 等. 光照调控园艺作物花青素苷生物合成的分子机制[J]. 园艺学报, 2021, 48(10): 1983-2000. |
HONG Y, WU Y W, SONG X, et al. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops[J]. Acta Horticulturae Sinica, 2021, 48(10): 1983-2000. (in Chinese with English abstract) | |
[37] |
SHI S L, LIU Y, HE Y J, et al. R2R3-MYB transcription factor SmMYB75 promotes anthocyanin biosynthesis in eggplant (Solanum melongena L.)[J]. Scientia Horticulturae, 2021, 282: 110020.
DOI URL |
[38] |
ARLOTTA C, PUGLIA G D, GENOVESE C, et al. MYB5-like and bHLH influence flavonoid composition in pomegranate[J]. Plant Science, 2020, 298: 110563.
DOI URL |
[39] | 张荔, 周波, 李玉花. 植物HY5蛋白结构与功能的研究进展[J]. 植物生理学通讯, 2010, 46(10): 985-990. |
ZHANG L, ZHOU B, LI Y H. Advances in the structure and function of HY5 in plant[J]. Plant Physiology Communications, 2010, 46(10): 985-990. (in Chinese with English abstract) | |
[40] |
ZHOU X, XUE Y, MAO M, et al. Metabolome and transcriptome profiling reveals anthocyanin contents and anthocyanin-related genes of chimeric leaves in Ananas comosus var. bracteatus[J]. BMC Genomics, 2021, 22(1): 331.
DOI URL |
[1] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[2] | YUAN Chongyuan, ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao. Identification of the interaction between ZmNLP5 and promoters of ZmSTP1, ZmAAP2 gene in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2340-2347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||