Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 90-102.DOI: 10.3969/j.issn.1004-1524.2023.01.10
• Horticultural Science • Previous Articles Next Articles
XIONG Xingwei(), WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong(
)
Received:
2022-03-30
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102.
差异表达基因ID ID of differential expressed genes | 正向引物 Forward primer(5'→3') | 反向引物 Reverse primer(5'→3') |
---|---|---|
CmaCh14G018600 | ATCTCCGCTCCGTTCCTCTGTC | GCTTCGGTTCCGATTTTCCATTTGG |
CmaCh11G001420 | ATCCGAGTTGAAGCACATCCAATCC | TCGCCTGAGCATTTCGTCACATAC |
CmaCh10G000130 | CTCACAGGAGTAACAGTCTGCGATG | AATATCACTGGCGAAGACGATGGC |
CmaCh03G010210 | GAAGGCTGAGGGAGTGAACAAGAAC | TCCAGGGTGTAAGTTAGGCGAGTC |
CmaCh07G007390 | GCTGGTGGAAGAGGTGATGAAGAAG | AGATGGCTGAACGCTCTCAAACAC |
CmaCh18G003280 | CGAGACTTGGACCTGCCCTTAAAG | CTGATTCTTTCGCCCTGGCTACG |
CmaCh11G018510 | TCAGTTGTCAAGCCACGAGTATTCC | GAAGCCCAATAGCACCCAGAAGAAG |
CmaCh19G009550 | GCGAAGGGAAAGGGCGTTAAGG | CAACATGGTAGCAGTGGGAAGGC |
CmaCh14G016960 | AACCCTCTTCACCCCATCTCTCTC | AAGATGCGGCAGGCTTGATGAG |
CmaCh05G007770 | GCCACTGAAGAACCCAAGCCTAAG | CCTGGTCAACTGTTACAACCGATCC |
CmaCh12G009820 | TTGGCCCCAAGAGAGGTACTAAGG | AACCGTGACAACAGATCCAACATCC |
CmaCh13G003520 | TCCTCCCTCTCCTCTCCTTCCTC | TGAACCTTCCGCCGAATGAACG |
CmaCh19G004980 | GCAGAGGCGGATGTCATCTTCAC | CACATGGCTCGACGTTCCTTGG |
CmaCh07G012230 | TTGCTAATGCTGCTGCTCTTCCG | AACGAATGGTGCTACAGTCGATACG |
18S | TCGGGATCGGAGTAATGA | TTCGCAGTTGTTCGTCTT |
Table 1 Specific primers used for qRT-PCR
差异表达基因ID ID of differential expressed genes | 正向引物 Forward primer(5'→3') | 反向引物 Reverse primer(5'→3') |
---|---|---|
CmaCh14G018600 | ATCTCCGCTCCGTTCCTCTGTC | GCTTCGGTTCCGATTTTCCATTTGG |
CmaCh11G001420 | ATCCGAGTTGAAGCACATCCAATCC | TCGCCTGAGCATTTCGTCACATAC |
CmaCh10G000130 | CTCACAGGAGTAACAGTCTGCGATG | AATATCACTGGCGAAGACGATGGC |
CmaCh03G010210 | GAAGGCTGAGGGAGTGAACAAGAAC | TCCAGGGTGTAAGTTAGGCGAGTC |
CmaCh07G007390 | GCTGGTGGAAGAGGTGATGAAGAAG | AGATGGCTGAACGCTCTCAAACAC |
CmaCh18G003280 | CGAGACTTGGACCTGCCCTTAAAG | CTGATTCTTTCGCCCTGGCTACG |
CmaCh11G018510 | TCAGTTGTCAAGCCACGAGTATTCC | GAAGCCCAATAGCACCCAGAAGAAG |
CmaCh19G009550 | GCGAAGGGAAAGGGCGTTAAGG | CAACATGGTAGCAGTGGGAAGGC |
CmaCh14G016960 | AACCCTCTTCACCCCATCTCTCTC | AAGATGCGGCAGGCTTGATGAG |
CmaCh05G007770 | GCCACTGAAGAACCCAAGCCTAAG | CCTGGTCAACTGTTACAACCGATCC |
CmaCh12G009820 | TTGGCCCCAAGAGAGGTACTAAGG | AACCGTGACAACAGATCCAACATCC |
CmaCh13G003520 | TCCTCCCTCTCCTCTCCTTCCTC | TGAACCTTCCGCCGAATGAACG |
CmaCh19G004980 | GCAGAGGCGGATGTCATCTTCAC | CACATGGCTCGACGTTCCTTGG |
CmaCh07G012230 | TTGCTAATGCTGCTGCTCTTCCG | AACGAATGGTGCTACAGTCGATACG |
18S | TCGGGATCGGAGTAATGA | TTCGCAGTTGTTCGTCTT |
基因ID Gene ID | 基因名称 Gene name | 相对表达水平 Relative expression level | |
---|---|---|---|
RNA-seq | qRT-PCR | ||
CmaCh14G018600 | HCAR | 96.92 | 0.92 |
CmaCh11G001420 | chlP, bchP | 43.16 | 1.15 |
CmaCh10G000130 | bchM,chlM | 181.12 | 2.69 |
CmaCh03G010210 | psbO | 564.12 | 21.51 |
CmaCh07G007390 | psbO | 467.19 | 19.25 |
CmaCh18G003280 | psbQ | 471.95 | 27.78 |
CmaCh11G018510 | MYBP/petC | 200.09 | 12.41 |
CmaCh19G009550 | petC | 428.96 | 42.18 |
CmaCh14G016960 | psaD | 442.07 | 52.54 |
CmaCh05G007770 | psaE | 104.02 | 1.88 |
CmaCh12G009820 | psaE | 592.67 | 69.60 |
CmaCh13G003520 | psaO | 576.34 | 37.67 |
CmaCh19G004980 | hemA | 104.80 | 1.15 |
CmaCh07G012230 | psbE | 6.40 | 0.26 |
Table 2 Name and relative expression level of genes verified by qRT-PCR
基因ID Gene ID | 基因名称 Gene name | 相对表达水平 Relative expression level | |
---|---|---|---|
RNA-seq | qRT-PCR | ||
CmaCh14G018600 | HCAR | 96.92 | 0.92 |
CmaCh11G001420 | chlP, bchP | 43.16 | 1.15 |
CmaCh10G000130 | bchM,chlM | 181.12 | 2.69 |
CmaCh03G010210 | psbO | 564.12 | 21.51 |
CmaCh07G007390 | psbO | 467.19 | 19.25 |
CmaCh18G003280 | psbQ | 471.95 | 27.78 |
CmaCh11G018510 | MYBP/petC | 200.09 | 12.41 |
CmaCh19G009550 | petC | 428.96 | 42.18 |
CmaCh14G016960 | psaD | 442.07 | 52.54 |
CmaCh05G007770 | psaE | 104.02 | 1.88 |
CmaCh12G009820 | psaE | 592.67 | 69.60 |
CmaCh13G003520 | psaO | 576.34 | 37.67 |
CmaCh19G004980 | hemA | 104.80 | 1.15 |
CmaCh07G012230 | psbE | 6.40 | 0.26 |
Fig.5 The GO terms of the DEGs 1, Biological adhesion; 2, Biological regulation; 3, Cell process; 4, Detoxification; 5, Development process; 6, Growth; 7, Immune system process; 8, Interspecies interactions between organisms; 9, Localization; 10, Locomotion; 11, Metabolic process; 12, Multi-organism process; 13, Multicellular organization process; 14, Nitrogen utilization; 15, Reproduction; 16, Reproductive process; 17, Response to stimulus; 18, Rhythmic process; 19, Signaling; 20, Cellular anatomical entity; 21, Intracellular; 22, Protein-containing complex; 23, Antioxide activity; 24, Binding; 25, Cargo receptor activity; 26, Catalytic activity; 27, Molecular carrier activity; 28, Molecular function regulator; 29, Molecular transducer activity; 30, Nutrient reservoir activity; 31, Protein folding chaperone; 32, Protein tag; 33, Small molecule sensor activity; 34, Structural molecular activity; 35, Toxin activity; 36, Transcriptional regulatory activity; 37, Translational regulatory activity; 38, Transporter activity.
Fig.6 Bubble chart of DEG GO enrichment 1, Protein serine/threonine kinase activity; 2, Cellular amino acid metabolic process; 3, Serine family amino acid metabolic process; 4, Phosphotransferase activity, alcohol group as acceptor; 5, Alpha-amino acid metabolic process; 6, Protein kinase activity; 7, Catalytic activity, acting on a protein; 8, Kinase activity; 9, Adenyl nucleotide binding; 10, Adenyl ribonucleotide binding; 11, ATP binding; 12, Carbohydrate derivative binding; 13, Anion binding; 14, Purine nucleotide binding; 15, Nucleoside phosphate binding; 16, Small molecule binding; 17, Purine ribonucleoside triphosphate binding; 18, Purine ribonucleotide binding; 19, Ribonucleotide binding; 20, Nucleotide binding.
Fig.7 Bubble chart of DEG KEGG pathways 1, Autopophagy-other; 2, Plant hormone signal transduction; 3, 2-Oxyxy arboxylic acid metabolism; 4, Carbon metabolism; 5, Thiamine metabolism; 6, Phenylalanine, tyrosine and tryptophan biosynthesis; 7, Arginine biosynthesis; 8, Pentose phosphate pathway; 9, Peroxisome; 10, Butyrate metabolism; 11, Photosynthesis-antenna proteins; 12, MAPK signaling pathway-plant; 13, Glycine, serine and threonine metabolism; 14, Sulfur metabolism; 15, Phagosome; 16, Porphyrin and chlorophyll metabolism; 17, Protein processing in endoplasmic reticulum; 18, Alanine, aspartate, and glutamate metabolism; 19, Proteasome; 20, Biosynthesis of amino acids.
Fig.9 Porphyrin and chlorophyll synthesis pathways A, ALA synthesis; B, Proporphyrin and heme synthesis; C, Chlorophyll synthesis. Red color indicated up-regulated genes, and green color showed down-regulated genes. The same as below.
[1] | 焦诗雅. 蜜本南瓜高产栽培技术探析[J]. 广东蚕业, 2022, 56(6): 57-59. |
JIAO S Y. Study on high yield cultivation techniques of honeydew Pumpkin[J]. Guangdong Sericulture, 2022, 56(6): 57-59. (in Chinese) | |
[2] | 王力源, 李文杰, 麻芸娇, 等. 白榆白化芽变突变体光合特性及转录组分析[J]. 西北林学院学报, 2020, 35(6): 10-16. |
WANG L Y, LI W J, MA Y J, et al. Photosynthetic characteristics and transcriptome analysis of albino mutant of Ulmus pumila[J]. Journal of Northwest Forestry University, 2020, 35(6): 10-16. (in Chinese with English abstract) | |
[3] |
HUANG S, SUN L, HU X, et al. Associations of canopy leaf traits with SNP markers in durum wheat (Triticum turgidum L. durum(Desf.))[J]. PLoS One, 2018, 13(10): e0206226.
DOI URL |
[4] | CHEN X, YANG X, XIE J, et al. Biochemical and comparative transcriptome analyses reveal key genes involved in major metabolic regulation related to colored leaf formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during development[J]. Biomolecules, 2020, 10(4): e549. |
[5] |
SANDHU D, ATKINSON T, NOLL A, et al. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function[J]. Plant Science, 2016, 252: 76-87.
DOI PMID |
[6] |
NAGATA N, TANAKA R, SATOH S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species[J]. The Plant Cell, 2005, 17(1): 233-240.
DOI URL |
[7] |
ADHIKARI N D, FROEHLICH J E, STRAND D D, et al. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis[J]. The Plant Cell, 2011, 23(4): 1449-1467.
DOI URL |
[8] |
LIU X X, ZHANG J G, XUE L, et al. Transcriptome-wide effect of Salix SmSPR1 in etiolated seedling of Arabidopsis[J]. Journal of Forestry Research, 2021, 32(3): 975-985.
DOI URL |
[9] | GAO T M, WEI S L, CHEN J, et al. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl-1 with yellow-green leaf color[J]. Genes & Genomics, 2020, 42(1): 25-39. |
[10] | KHAN A, JALIL S, CAO H, et al. The purple leaf (pl6) mutation regulates leaf color by altering the anthocyanin and chlorophyll contents in rice[J]. Plants (Basel, Switzerland), 2020, 9(11): e1477. |
[11] | WANG Y, LIU S, TIAN X, et al. Influence of light intensity on chloroplast development and pigment accumulation in the wild-type and etiolated mutant plants of Anthurium and ‘Sonate’[J]. Plant Signaling & Behavior, 2018, 13(8): e1482174. |
[12] |
GAO M L, HU L L, LI Y H, et al. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit[J]. Theoretical and Applied Genetics, 2016, 129(10): 1961-1973.
DOI PMID |
[13] |
ZHOU P L, KHAN R, LI Q Y, et al. Transcriptomic analyses of chilling stress responsiveness in leaves of tobacco (Nicotiana tabacum) seedlings[J]. Plant Molecular Biology Reporter, 2020, 38(1): 1-13.
DOI URL |
[14] |
LIN D, GONG X, JIANG Q, et al. The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth[J]. Rice (New York, N Y ), 2015, 8: 17.
DOI PMID |
[15] |
LI N, JIA J, XIA C, et al. Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat[J]. Breeding Science, 2013, 63(2): 169-175.
DOI PMID |
[16] |
MA C Y, CAO J X, LI J K, et al. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis[J]. Scientific Reports, 2016, 6(1): 33369.
DOI URL |
[17] | 马华升, 姚艳玲, 忻雅, 等. 大花惠兰组培苗中叶色突变体的获得与DNA鉴定[J]. 浙江农业学报, 2008, 20(3): 149-153. |
MA H S, YAO Y L, XIN Y, et al. Gain and DNA identification of leaf color mutant derived from tissue culture of Cymbidium hyhridum[J]. Acta Agriculturae Zhejiangensis, 2008, 20(3): 149-153. (in Chinese with English abstract) | |
[18] | QIN D, XU C. Study strategies for long non-coding RNAs and their roles in regulating gene expression[J]. Cellular & Molecular Biology Letters, 2015, 20(2): 323-349. |
[19] |
LYU Y Z, DONG X Y, HUANG L B, et al. De novo assembly of Koelreuteria transcriptome and analysis of major gene related to leaf etiolation[J]. South African Journal of Botany, 2017, 113: 355-361.
DOI URL |
[20] | JIANG Y, WANG Q, SHEN Q Q, et al. Transcriptome analysis reveals genes associated with leaf color mutants in Cymbidium longibracteatum[J]. Tree Genetics & Genomes, 2020, 16(3): 1-10. |
[21] |
WU Y Q, LI X, WANG T L, et al. Ginkgo biloba microRNA profiling reveals new insight into leaf color mutation[J]. Scientia Horticulturae, 2020, 265: 109189.
DOI URL |
[22] | 汪端华, 杨建国, 李倩, 等. 南瓜银叶突变体48a的表型特征及其遗传学分析[J]. 中国瓜菜, 2020, 33(4): 12-16. |
WANG D H, YANG J G, LI Q, et al. Phenotypic characteristics and genetic analysis of pumpkin (Cucurbita moschata Duch.) silver leaf mutant 48a[J]. China Cucurbits and Vegetables, 2020, 33(4): 12-16. (in Chinese with English abstract) | |
[23] |
FU M Y, CHENG S Y, XU F, et al. Advance in mechanism of plant leaf colour mutation[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(2): 12071.
DOI URL |
[24] |
RAMZI A B, HYEON J E, KIM S W, et al. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway[J]. Enzyme and Microbial Technology, 2015, 81: 1-7.
DOI URL |
[25] | KATO K, TANAKA R, SANO S, et al. Identification of a gene essential for protoporphyrinogen Ⅸ oxidase activity in the cyanobacterium Synechocystis sp. PCC6803[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16649-16654. |
[26] |
WANG Z, HONG X, HU K, et al. Impaired magnesium protoporphyrin Ⅸ methyltransferase (ChlM) impedes chlorophyll synthesis and plant growth in rice[J]. Frontiers in Plant Science, 2017, 8: 1694.
DOI URL |
[27] | 张智韦. 乙烯利对低温胁迫下日本结缕草叶绿素代谢通路的影响[D]. 北京: 北京林业大学, 2020. |
ZHANG Z W. Effects of ethephon on chlorophyll metabolic pathway of Zoysia japonica under low temperature stress[D]. Beijing: Beijing Forestry University, 2020. (in Chinese with English abstract) | |
[28] |
LI Y Y, HAN M, WANG R H, et al. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot[J]. PLoS One, 2021, 16(5): e0252031.
DOI URL |
[29] |
LIN Y P, LEE T Y, TANAKA A, et al. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover[J]. The Plant Journal, 2014, 80(1): 14-26.
DOI URL |
[30] | ZHAO X, JIA T, HU X. HCAR is a limitation factor for chlorophyll cycle and chlorophyll b degradation in chlorophyll-b-overproducing plants[J]. Biomolecules, 2020, 10(12): e1639. |
[31] |
KROL M, SPANGFORT M D, HUNER N, et al. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant[J]. Plant Physiology, 1995, 107(3): 873-883.
DOI PMID |
[32] |
ZHANG Q, SHAN C H, NING M, et al. Transcriptome profiling of gold queen Hami melons under cold stress[J]. Russian Journal of Plant Physiology, 2020, 67(5): 888-897.
DOI URL |
[33] |
ZHANG H J, CHEN J F, ZHANG F, et al. Transcriptome analysis of callus from melon[J]. Gene, 2019, 684: 131-138.
DOI PMID |
[34] | 朱美玉. 番茄黄叶突变体LA3734的光合特性及差异表达基因分析[D]. 沈阳: 沈阳农业大学, 2020. |
ZHU M Y. Analysis of photosynthetic characteristics and differentially expressed genes of a tomato yellow leaf mutant LA3734[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract) | |
[35] | 吴砚农, 郑伟尉, 陆伟杰, 等. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报, 2021, 38(2): 412-419. |
WU Y N, ZHENG W W, LU W J, et al. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A & F University, 2021, 38(2): 412-419. (in Chinese with English abstract) | |
[36] |
OCHSENKÜHN T, TILLACK C, STEPP H, et al. Low frequency of colorectal dysplasia in patients with long-standing inflammatory bowel disease colitis: detection by fluorescence endoscopy[J]. Endoscopy, 2006, 38(5): 477-482.
PMID |
[37] |
SAKURABA Y, PARK S Y, PAEK N C. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation[J]. Molecules and Cells, 2015, 38(5): 390-395.
DOI PMID |
[38] | 王亚琴. 水稻黄绿叶突变体ygl13的鉴定和候选基因分析[D]. 重庆: 西南大学, 2016. |
WANG Y Q. Characterization and candidate gene analysis of yellow-green leaf mutant ygl13 in rice (Oryza sativa)[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract) | |
[39] |
ANDERSON S A, SINGHAL R, FERNANDEZ D E. Membrane-specific targeting of tail-anchored proteins SECE1 and SECE2 within chloroplasts[J]. Frontiers in Plant Science, 2019, 10: 1401.
DOI PMID |
[40] |
BASHIR H, QURESHI M I, IBRAHIM M M, et al. Chloroplast and photosystems: impact of cadmium and iron deficiency[J]. Photosynthetica, 2015, 53(3): 321-335.
DOI URL |
[41] |
ALLEN J F, DE PAULA W B M, PUTHIYAVEETIL S, et al. A structural phylogenetic map for chloroplast photosynthesis[J]. Trends in Plant Science, 2011, 16(12): 645-655.
DOI PMID |
[42] |
SHI K, GU J, GUO H, et al. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta[J]. PLoS One, 2017, 12(5): e0177992.
DOI URL |
[43] |
ALBERTSSON P Å. A quantitative model of the domain structure of the photosynthetic membrane[J]. Trends in Plant Science, 2001, 6(8): 349-354.
PMID |
[44] |
CHU P, YAN G X, YANG Q, et al. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency[J]. Journal of Proteomics, 2015, 113: 244-259.
DOI URL |
[45] |
JANSSON S. A guide to the Lhc genes and their relatives in Arabidopsis[J]. Trends in Plant Science, 1999, 4(6): 236-240.
DOI URL |
[1] | YE Meirong, HUANG Shoucheng, WANG Xiaopeng, LIU Airong, CUI Feng, KANG Jian. Transcriptome analysis of leaves of wild Portulaca oleracea L. based on Iso-Seq technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 67-78. |
[2] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[3] | GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924. |
[4] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
[5] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[6] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[7] | ZHANG Zhiguo, CONG Lin, ZHANG Shijie, LI Rongguang, ZOU Weina, CHI Fa'an, ZHANG Bao, JIANG Yuping. Effects of root-zone temperature on growth, development and flowering of Hemerocallis fulva [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1005-1014. |
[8] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[9] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[10] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[11] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
[12] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[13] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[14] | WANG Huiru, LI Jianshe, YAN Sihua, GAO Yanming. Effect of prunning patterns on canopy light interception characteristics and chlorophyll fluorescence parameters in cherry tomato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 525-533. |
[15] | CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 688
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 436
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||