Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1103-1113.DOI: 10.3969/j.issn.1004-1524.2022.06.01
• Crop Science • Previous Articles Next Articles
DONG Yuanyuan1,2(), XU Heng2, ZHANG Hua2, ZHANG Heng2, WANG Fulin2, GU Nana2, ZHU Ying2,*(
)
Received:
2022-02-22
Online:
2022-06-25
Published:
2022-06-30
Contact:
ZHU Ying
CLC Number:
DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.06.01
基因 Gene | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Product length/bp |
---|---|---|---|
OsNCED1 | AGCCTCGGTCTTCCAATTTT | CACCCAACACAAAAGCTACG | 125 |
OsNCED2 | TCATTCCAAAACACCTTCCA | TCCGGGGACCTCCTATGTAT | 113 |
OsNCED3 | ACGTGATCAAGAAGCCGTACCT | GCTGGTCGAGCGGGATCT | 87 |
OsNCED4 | GCCGAGACACGCATTGG | GTGAAGGTGGCGACAGCAA | 74 |
OsABA8ox1 | AAGCTGGCAAAACCAACATC | CCGTGCTAATACGGAATCCA | 146 |
OsABA8ox2 | CTACTGCTGATGGTGGCTGA | CCCATGGCCTTTGCTTTAT | 115 |
OsABA8ox3 | AGTACAGCCCATTCCCTGTG | ACGCCTAATCAAACCATTGC | 136 |
OsAmy1A | GATACGACGTCGAACACCTC | CGGATCGGATACAGCTCGTTG | 184 |
OsAmy2A | GCCGATCATCGCACCTCTTC | CGATCCCACATATCAGTGACG | 150 |
OsAmy3A | GAGGGTCATCACCAAGATCG | TGTGTAGCTAGCTTGCGAGC | 116 |
OsAmy3B | GATTGGGACACGGTATGACG | CTGCAGGAACTCTGAGACCG | 110 |
OsAmy3C | AGACTTCCATGTCGTTGCTC | CAGGCACAAAATAGTCCTG | 119 |
OsAmy3D | GTAGGCAGGCTCTCTAGCCT | CCAACGGTTACAAACTGCGTGA | 91 |
OsAmy3E | GAAGGAAGGCCTCAGGGTTC | GCTCGTACACATCTCGCAGCA | 153 |
OsGA20ox1 | AATGAGCATGGTGGTGCAGCAGGAGCAG | GTTAACCACCAGGAAGAAGCCGTGCCTC | 235 |
OsGA20ox2 | TACTACAGGGAGTTCTTCGCGGACAGCA | TGTGCAGGCAGCTCTTATACCTCCCGTT | 268 |
OsGA3ox1 | GACGATTCACCTCAACATGTTCCCT | GGCTCTGCAGGATGAAGGTGAA | 104 |
OsGA3ox2 | TCTCCAAGCTCATGTGGTCCGAGGGCTA | TGGAGCACGAAGGTGAAGAAGCCCGAGT | 346 |
OsABI3 | GAAGACGGACAAGAACCTGC | ATGTTCCACACCTGAGACGT | 177 |
OsABI4 | TTCCATCACCAACCGTTC | TTGAGGAAGAGATCGAACCA | 353 |
OsABI5 | ATGGGATCTGGCATGGTCAA | CAATCGCCATCCCGTTGTAC | 151 |
OsLEA3 | GCCGTGAATGATTTCCCTTTG | CACACCCGTCAGAAATCCTCC | 148 |
OsSLR1 | GATCGTCACCGTGGTAGAGC | GAGGGAATCGAACATGGTGG | 103 |
OsGAMYB | GAATCCACCCCTCCTGTT | GCCCCATTACTTGCTCTCC | 106 |
OsKO2 | CGTGGAGAGGCAAAGACATG | GCCAACAATGAGCTGGAACA | 116 |
OsKS1 | TCTCATTTGCACTGGGACCT | ACTGTTCAGCTTTCCCTCCA | 182 |
OsPDS | AAACCGTTCAATGCTGGAGTTG | CAAGGTTCACAGTCCGGGATAG | 210 |
OsZDS | CAATCATTGTACCGCGAGTCAC | TCGACAATGAGCTTCTTTCGGA | 209 |
OsCRTISO | GCTGAAGTCCCTTGAGGAGCCTC | CCCCCGAAGTGCCTATCGCAC | 240 |
UBQ10 | TGGTCAGTAATCAGCCAGTTTGG | GCACCACAAATACTTGACGAACAG | 81 |
Table 1 Primers used for qRT-PCR
基因 Gene | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Product length/bp |
---|---|---|---|
OsNCED1 | AGCCTCGGTCTTCCAATTTT | CACCCAACACAAAAGCTACG | 125 |
OsNCED2 | TCATTCCAAAACACCTTCCA | TCCGGGGACCTCCTATGTAT | 113 |
OsNCED3 | ACGTGATCAAGAAGCCGTACCT | GCTGGTCGAGCGGGATCT | 87 |
OsNCED4 | GCCGAGACACGCATTGG | GTGAAGGTGGCGACAGCAA | 74 |
OsABA8ox1 | AAGCTGGCAAAACCAACATC | CCGTGCTAATACGGAATCCA | 146 |
OsABA8ox2 | CTACTGCTGATGGTGGCTGA | CCCATGGCCTTTGCTTTAT | 115 |
OsABA8ox3 | AGTACAGCCCATTCCCTGTG | ACGCCTAATCAAACCATTGC | 136 |
OsAmy1A | GATACGACGTCGAACACCTC | CGGATCGGATACAGCTCGTTG | 184 |
OsAmy2A | GCCGATCATCGCACCTCTTC | CGATCCCACATATCAGTGACG | 150 |
OsAmy3A | GAGGGTCATCACCAAGATCG | TGTGTAGCTAGCTTGCGAGC | 116 |
OsAmy3B | GATTGGGACACGGTATGACG | CTGCAGGAACTCTGAGACCG | 110 |
OsAmy3C | AGACTTCCATGTCGTTGCTC | CAGGCACAAAATAGTCCTG | 119 |
OsAmy3D | GTAGGCAGGCTCTCTAGCCT | CCAACGGTTACAAACTGCGTGA | 91 |
OsAmy3E | GAAGGAAGGCCTCAGGGTTC | GCTCGTACACATCTCGCAGCA | 153 |
OsGA20ox1 | AATGAGCATGGTGGTGCAGCAGGAGCAG | GTTAACCACCAGGAAGAAGCCGTGCCTC | 235 |
OsGA20ox2 | TACTACAGGGAGTTCTTCGCGGACAGCA | TGTGCAGGCAGCTCTTATACCTCCCGTT | 268 |
OsGA3ox1 | GACGATTCACCTCAACATGTTCCCT | GGCTCTGCAGGATGAAGGTGAA | 104 |
OsGA3ox2 | TCTCCAAGCTCATGTGGTCCGAGGGCTA | TGGAGCACGAAGGTGAAGAAGCCCGAGT | 346 |
OsABI3 | GAAGACGGACAAGAACCTGC | ATGTTCCACACCTGAGACGT | 177 |
OsABI4 | TTCCATCACCAACCGTTC | TTGAGGAAGAGATCGAACCA | 353 |
OsABI5 | ATGGGATCTGGCATGGTCAA | CAATCGCCATCCCGTTGTAC | 151 |
OsLEA3 | GCCGTGAATGATTTCCCTTTG | CACACCCGTCAGAAATCCTCC | 148 |
OsSLR1 | GATCGTCACCGTGGTAGAGC | GAGGGAATCGAACATGGTGG | 103 |
OsGAMYB | GAATCCACCCCTCCTGTT | GCCCCATTACTTGCTCTCC | 106 |
OsKO2 | CGTGGAGAGGCAAAGACATG | GCCAACAATGAGCTGGAACA | 116 |
OsKS1 | TCTCATTTGCACTGGGACCT | ACTGTTCAGCTTTCCCTCCA | 182 |
OsPDS | AAACCGTTCAATGCTGGAGTTG | CAAGGTTCACAGTCCGGGATAG | 210 |
OsZDS | CAATCATTGTACCGCGAGTCAC | TCGACAATGAGCTTCTTTCGGA | 209 |
OsCRTISO | GCTGAAGTCCCTTGAGGAGCCTC | CCCCCGAAGTGCCTATCGCAC | 240 |
UBQ10 | TGGTCAGTAATCAGCCAGTTTGG | GCACCACAAATACTTGACGAACAG | 81 |
Fig.1 Phenotypes ofseed during seed maturation under high humidity treatment A, Rice under high humidity; B, Pre-harvest spouting under high humidity treatment.
Fig.2 Expression profiles of ABA synthesis and metabolism genes in rice seed under high humidity treatment CK, Control; HH, High humidity. Two-tailed unpaired t-tests were used to determine significant differences. *, P<0.05; **, P<0.01. The same as below.
[1] |
FINCH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171(3): 501-523.
DOI URL |
[2] |
SHU K, MENG Y J, SHUAI H W, et al. Dormancy and germination: how does the crop seed decide?[J]. Plant Biology, 2015, 17(6): 1104-1112.
DOI URL |
[3] | SOHN S I, PANDIAN S, KUMAR T S, et al. Seed dormancy and pre-harvest sprouting in rice-an updated overview[J]. International Journal of Molecular Sciences, 2021, 22(21):11804. |
[4] |
FANG J, CHAI C L, QIAN Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. The Plant Journal, 2008, 54(2): 177-189.
DOI URL |
[5] |
TAI L, WANG H J, XU X J, et al. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms[J]. Journal of Experimental Botany, 2021, 72(8): 2857-2876.
DOI URL |
[6] | 陶龙兴, 王熹, 谈惠娟, 等. 关于水稻穗芽的生理学研究[J]. 作物学报, 2006, 32(5): 728-733. |
TAO L X, WANG X, TAN H J, et al. A physiological study on pre-harvest sprouting in rice[J]. Acta Agronomica Sinica, 2006, 32(5): 728-733. (in Chinese with English abstract) | |
[7] | LI C D, NI P X, FRANCKI M, et al. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison[J]. Functional & Integrative Genomics, 2004, 4(2): 84-93. |
[8] |
NONOGAKI H, BARRERO J M, LI C D. Editorial: seed dormancy, germination, and pre-harvest sprouting[J]. Frontiers in Plant Science, 2018, 9: 1783.
DOI URL |
[9] |
SHU K, LIU X D, XIE Q, et al. Two faces of one seed: hormonal regulation of dormancy and germination[J]. Molecular Plant, 2016, 9(1): 34-45.
DOI URL |
[10] | 于敏, 徐恒, 张华, 等. 植物激素在种子休眠与萌发中的调控机制[J]. 植物生理学报, 2016, 52(5): 599-606. |
YU M, XU H, ZHANG H, et al. Regulation of plant hormones on seed dormancy and germination[J]. Plant Physiology Journal, 2016, 52(5): 599-606. (in Chinese with English abstract) | |
[11] |
SIMSEK S, OHM J B, LU H Y, et al. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat[J]. Foods, 2014, 3(2): 194-207.
DOI URL |
[12] |
GERJETS T, SCHOLEFIELD D, FOULKES M J, et al. An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses[J]. Journal of Experimental Botany, 2009, 61(2): 597-607.
DOI URL |
[13] |
BARRERO J M, DOWNIE A B, XU Q, et al. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination[J]. The Plant Cell, 2014, 26(3): 1094-1104.
DOI URL |
[14] | HOANG H H, SECHET J, BAILLY C, et al. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation[J]. Plant, Cell & Environment, 2014, 37(6): 1393-1403. |
[15] |
FOOTITT S, DOUTERELO-SOLER I, CLAY H, et al. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways[J]. Proceedings of the National Academy of Sciences, 2011, 108(50): 20236-20241.
DOI URL |
[16] |
NAKAMURA S, ABE F, KAWAHIGASHI H, et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination[J]. The Plant Cell, 2011, 23(9): 3215-3229.
DOI URL |
[17] |
NIELSEN M T, MCCRATE A J, HEYNE E G, et al. Effect of weather variables during maturation on preharvest sprouting of hard white Wheat1[J]. Crop Science, 1984, 24(4): 779-782.
DOI URL |
[18] |
MACGREGOR D R, KENDALL S L, FLORANCE H, et al. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism[J]. New Phytologist, 2015, 205(2): 642-652.
DOI URL |
[19] | 袁仁长. 防止水稻制种穗发芽的几项措施[J]. 种子世界, 1986(6): 17. |
YUAN R C. Several measures to prevent pre-harvest sprouting of rice seed[J]. Seed World, 1986(6): 17. (in Chinese) | |
[20] |
HAKATA M, KURODA M, MIYASHITA T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117.
DOI URL |
[21] |
ZHU G H, YE N H, ZHANG J H. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis[J]. Plant and Cell Physiology, 2009, 50(3): 644-651.
DOI URL |
[22] |
TOH S, IMAMURA A, WATANABE A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J]. Plant Physiology, 2008, 146(3): 1368-1385.
DOI URL |
[23] |
WANG Q, HILLWIG M L, WU Y S, et al. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism[J]. Plant Physiology, 2012, 158(3): 1418-1425.
DOI URL |
[24] |
MITSUI T, YAMAGUCHI J, AKAZAWA T. Physicochemical and serological characterization of rice alpha-amylase isoforms and identification of their corresponding genes[J]. Plant Physiology, 1996, 110(4): 1395-1404.
DOI URL |
[1] | TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257. |
[2] | ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267. |
[3] | YE Ying, ZHAO Kaocheng, MA Jun, ZHU Ke, ZHUANG Hengyang. Effects of sowing date and nitrogen application rate on grain yield and nitrogen utilization of rice variety Nanjing 9108 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 879-886. |
[4] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[5] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[6] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[7] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[8] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[9] | WANG Can, FU Tianling, GONG Sitong, LOU Fei, ZHOU Kai, DAI Liangyu, LIU Jing, LIN Dasong, HE Tengbing. Effects of foliar control agents on cadmium enrichment characteristics of rice in karst area in central Guizhou [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1710-1719. |
[10] | HUANG Xuan, JIN Lincan, YE Chaohui, JIANG Jiefeng, SHI Xianbo. Molecular detection and breeding application of some disease and insect resistance genes of japonica rice varieties/lines recently developed in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1159-1169. |
[11] | ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034. |
[12] | ZHANG Huiyun, QIN Lijie, JIA Li. Temporal and spatial characteristics of carbon footprint and water footprint in rice production in Jilin Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 974-983. |
[13] | WANG Feng, SHEN Jianghua, CHEN Ruoxia, SHI Jun, REN Shaopeng, JIN Shuquan, YAO Hongyan, ZHU Defeng, DAI Yaolu. Effects of reduced nitrogen application on yield and nitrogen agronomic efficiency of Yongyou indica-japonica hybrid rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 984-992. |
[14] | WANG Zhi, HU Zhonghao, GUI Xueer, FENG Shibin, LI Yu, WANG Xichun, LI Jinchun, WU Jinjie. Effects of high protein diets on serum uric acid levels, liver and kidney ultrastructure and expression of ABCG2 in goslings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 801-808. |
[15] | ZHU Yun, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, LI Ningyu, LI Hua. Effects of self-developed soil conditioner on soil physiochemical properties and rice yield in coastal saline soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 885-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||