Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1103-1113.DOI: 10.3969/j.issn.1004-1524.2022.06.01
• Crop Science • Previous Articles Next Articles
DONG Yuanyuan1,2(
), XU Heng2, ZHANG Hua2, ZHANG Heng2, WANG Fulin2, GU Nana2, ZHU Ying2,*(
)
Received:2022-02-22
Online:2022-06-25
Published:2022-06-30
Contact:
ZHU Ying
CLC Number:
DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.06.01
| 基因 Gene | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Product length/bp |
|---|---|---|---|
| OsNCED1 | AGCCTCGGTCTTCCAATTTT | CACCCAACACAAAAGCTACG | 125 |
| OsNCED2 | TCATTCCAAAACACCTTCCA | TCCGGGGACCTCCTATGTAT | 113 |
| OsNCED3 | ACGTGATCAAGAAGCCGTACCT | GCTGGTCGAGCGGGATCT | 87 |
| OsNCED4 | GCCGAGACACGCATTGG | GTGAAGGTGGCGACAGCAA | 74 |
| OsABA8ox1 | AAGCTGGCAAAACCAACATC | CCGTGCTAATACGGAATCCA | 146 |
| OsABA8ox2 | CTACTGCTGATGGTGGCTGA | CCCATGGCCTTTGCTTTAT | 115 |
| OsABA8ox3 | AGTACAGCCCATTCCCTGTG | ACGCCTAATCAAACCATTGC | 136 |
| OsAmy1A | GATACGACGTCGAACACCTC | CGGATCGGATACAGCTCGTTG | 184 |
| OsAmy2A | GCCGATCATCGCACCTCTTC | CGATCCCACATATCAGTGACG | 150 |
| OsAmy3A | GAGGGTCATCACCAAGATCG | TGTGTAGCTAGCTTGCGAGC | 116 |
| OsAmy3B | GATTGGGACACGGTATGACG | CTGCAGGAACTCTGAGACCG | 110 |
| OsAmy3C | AGACTTCCATGTCGTTGCTC | CAGGCACAAAATAGTCCTG | 119 |
| OsAmy3D | GTAGGCAGGCTCTCTAGCCT | CCAACGGTTACAAACTGCGTGA | 91 |
| OsAmy3E | GAAGGAAGGCCTCAGGGTTC | GCTCGTACACATCTCGCAGCA | 153 |
| OsGA20ox1 | AATGAGCATGGTGGTGCAGCAGGAGCAG | GTTAACCACCAGGAAGAAGCCGTGCCTC | 235 |
| OsGA20ox2 | TACTACAGGGAGTTCTTCGCGGACAGCA | TGTGCAGGCAGCTCTTATACCTCCCGTT | 268 |
| OsGA3ox1 | GACGATTCACCTCAACATGTTCCCT | GGCTCTGCAGGATGAAGGTGAA | 104 |
| OsGA3ox2 | TCTCCAAGCTCATGTGGTCCGAGGGCTA | TGGAGCACGAAGGTGAAGAAGCCCGAGT | 346 |
| OsABI3 | GAAGACGGACAAGAACCTGC | ATGTTCCACACCTGAGACGT | 177 |
| OsABI4 | TTCCATCACCAACCGTTC | TTGAGGAAGAGATCGAACCA | 353 |
| OsABI5 | ATGGGATCTGGCATGGTCAA | CAATCGCCATCCCGTTGTAC | 151 |
| OsLEA3 | GCCGTGAATGATTTCCCTTTG | CACACCCGTCAGAAATCCTCC | 148 |
| OsSLR1 | GATCGTCACCGTGGTAGAGC | GAGGGAATCGAACATGGTGG | 103 |
| OsGAMYB | GAATCCACCCCTCCTGTT | GCCCCATTACTTGCTCTCC | 106 |
| OsKO2 | CGTGGAGAGGCAAAGACATG | GCCAACAATGAGCTGGAACA | 116 |
| OsKS1 | TCTCATTTGCACTGGGACCT | ACTGTTCAGCTTTCCCTCCA | 182 |
| OsPDS | AAACCGTTCAATGCTGGAGTTG | CAAGGTTCACAGTCCGGGATAG | 210 |
| OsZDS | CAATCATTGTACCGCGAGTCAC | TCGACAATGAGCTTCTTTCGGA | 209 |
| OsCRTISO | GCTGAAGTCCCTTGAGGAGCCTC | CCCCCGAAGTGCCTATCGCAC | 240 |
| UBQ10 | TGGTCAGTAATCAGCCAGTTTGG | GCACCACAAATACTTGACGAACAG | 81 |
Table 1 Primers used for qRT-PCR
| 基因 Gene | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 产物长度 Product length/bp |
|---|---|---|---|
| OsNCED1 | AGCCTCGGTCTTCCAATTTT | CACCCAACACAAAAGCTACG | 125 |
| OsNCED2 | TCATTCCAAAACACCTTCCA | TCCGGGGACCTCCTATGTAT | 113 |
| OsNCED3 | ACGTGATCAAGAAGCCGTACCT | GCTGGTCGAGCGGGATCT | 87 |
| OsNCED4 | GCCGAGACACGCATTGG | GTGAAGGTGGCGACAGCAA | 74 |
| OsABA8ox1 | AAGCTGGCAAAACCAACATC | CCGTGCTAATACGGAATCCA | 146 |
| OsABA8ox2 | CTACTGCTGATGGTGGCTGA | CCCATGGCCTTTGCTTTAT | 115 |
| OsABA8ox3 | AGTACAGCCCATTCCCTGTG | ACGCCTAATCAAACCATTGC | 136 |
| OsAmy1A | GATACGACGTCGAACACCTC | CGGATCGGATACAGCTCGTTG | 184 |
| OsAmy2A | GCCGATCATCGCACCTCTTC | CGATCCCACATATCAGTGACG | 150 |
| OsAmy3A | GAGGGTCATCACCAAGATCG | TGTGTAGCTAGCTTGCGAGC | 116 |
| OsAmy3B | GATTGGGACACGGTATGACG | CTGCAGGAACTCTGAGACCG | 110 |
| OsAmy3C | AGACTTCCATGTCGTTGCTC | CAGGCACAAAATAGTCCTG | 119 |
| OsAmy3D | GTAGGCAGGCTCTCTAGCCT | CCAACGGTTACAAACTGCGTGA | 91 |
| OsAmy3E | GAAGGAAGGCCTCAGGGTTC | GCTCGTACACATCTCGCAGCA | 153 |
| OsGA20ox1 | AATGAGCATGGTGGTGCAGCAGGAGCAG | GTTAACCACCAGGAAGAAGCCGTGCCTC | 235 |
| OsGA20ox2 | TACTACAGGGAGTTCTTCGCGGACAGCA | TGTGCAGGCAGCTCTTATACCTCCCGTT | 268 |
| OsGA3ox1 | GACGATTCACCTCAACATGTTCCCT | GGCTCTGCAGGATGAAGGTGAA | 104 |
| OsGA3ox2 | TCTCCAAGCTCATGTGGTCCGAGGGCTA | TGGAGCACGAAGGTGAAGAAGCCCGAGT | 346 |
| OsABI3 | GAAGACGGACAAGAACCTGC | ATGTTCCACACCTGAGACGT | 177 |
| OsABI4 | TTCCATCACCAACCGTTC | TTGAGGAAGAGATCGAACCA | 353 |
| OsABI5 | ATGGGATCTGGCATGGTCAA | CAATCGCCATCCCGTTGTAC | 151 |
| OsLEA3 | GCCGTGAATGATTTCCCTTTG | CACACCCGTCAGAAATCCTCC | 148 |
| OsSLR1 | GATCGTCACCGTGGTAGAGC | GAGGGAATCGAACATGGTGG | 103 |
| OsGAMYB | GAATCCACCCCTCCTGTT | GCCCCATTACTTGCTCTCC | 106 |
| OsKO2 | CGTGGAGAGGCAAAGACATG | GCCAACAATGAGCTGGAACA | 116 |
| OsKS1 | TCTCATTTGCACTGGGACCT | ACTGTTCAGCTTTCCCTCCA | 182 |
| OsPDS | AAACCGTTCAATGCTGGAGTTG | CAAGGTTCACAGTCCGGGATAG | 210 |
| OsZDS | CAATCATTGTACCGCGAGTCAC | TCGACAATGAGCTTCTTTCGGA | 209 |
| OsCRTISO | GCTGAAGTCCCTTGAGGAGCCTC | CCCCCGAAGTGCCTATCGCAC | 240 |
| UBQ10 | TGGTCAGTAATCAGCCAGTTTGG | GCACCACAAATACTTGACGAACAG | 81 |
Fig.1 Phenotypes ofseed during seed maturation under high humidity treatment A, Rice under high humidity; B, Pre-harvest spouting under high humidity treatment.
Fig.2 Expression profiles of ABA synthesis and metabolism genes in rice seed under high humidity treatment CK, Control; HH, High humidity. Two-tailed unpaired t-tests were used to determine significant differences. *, P<0.05; **, P<0.01. The same as below.
| [1] |
FINCH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171(3): 501-523.
DOI URL |
| [2] |
SHU K, MENG Y J, SHUAI H W, et al. Dormancy and germination: how does the crop seed decide?[J]. Plant Biology, 2015, 17(6): 1104-1112.
DOI URL |
| [3] | SOHN S I, PANDIAN S, KUMAR T S, et al. Seed dormancy and pre-harvest sprouting in rice-an updated overview[J]. International Journal of Molecular Sciences, 2021, 22(21):11804. |
| [4] |
FANG J, CHAI C L, QIAN Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. The Plant Journal, 2008, 54(2): 177-189.
DOI URL |
| [5] |
TAI L, WANG H J, XU X J, et al. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms[J]. Journal of Experimental Botany, 2021, 72(8): 2857-2876.
DOI URL |
| [6] | 陶龙兴, 王熹, 谈惠娟, 等. 关于水稻穗芽的生理学研究[J]. 作物学报, 2006, 32(5): 728-733. |
| TAO L X, WANG X, TAN H J, et al. A physiological study on pre-harvest sprouting in rice[J]. Acta Agronomica Sinica, 2006, 32(5): 728-733. (in Chinese with English abstract) | |
| [7] | LI C D, NI P X, FRANCKI M, et al. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison[J]. Functional & Integrative Genomics, 2004, 4(2): 84-93. |
| [8] |
NONOGAKI H, BARRERO J M, LI C D. Editorial: seed dormancy, germination, and pre-harvest sprouting[J]. Frontiers in Plant Science, 2018, 9: 1783.
DOI URL |
| [9] |
SHU K, LIU X D, XIE Q, et al. Two faces of one seed: hormonal regulation of dormancy and germination[J]. Molecular Plant, 2016, 9(1): 34-45.
DOI URL |
| [10] | 于敏, 徐恒, 张华, 等. 植物激素在种子休眠与萌发中的调控机制[J]. 植物生理学报, 2016, 52(5): 599-606. |
| YU M, XU H, ZHANG H, et al. Regulation of plant hormones on seed dormancy and germination[J]. Plant Physiology Journal, 2016, 52(5): 599-606. (in Chinese with English abstract) | |
| [11] |
SIMSEK S, OHM J B, LU H Y, et al. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat[J]. Foods, 2014, 3(2): 194-207.
DOI URL |
| [12] |
GERJETS T, SCHOLEFIELD D, FOULKES M J, et al. An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses[J]. Journal of Experimental Botany, 2009, 61(2): 597-607.
DOI URL |
| [13] |
BARRERO J M, DOWNIE A B, XU Q, et al. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination[J]. The Plant Cell, 2014, 26(3): 1094-1104.
DOI URL |
| [14] | HOANG H H, SECHET J, BAILLY C, et al. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation[J]. Plant, Cell & Environment, 2014, 37(6): 1393-1403. |
| [15] |
FOOTITT S, DOUTERELO-SOLER I, CLAY H, et al. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways[J]. Proceedings of the National Academy of Sciences, 2011, 108(50): 20236-20241.
DOI URL |
| [16] |
NAKAMURA S, ABE F, KAWAHIGASHI H, et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination[J]. The Plant Cell, 2011, 23(9): 3215-3229.
DOI URL |
| [17] |
NIELSEN M T, MCCRATE A J, HEYNE E G, et al. Effect of weather variables during maturation on preharvest sprouting of hard white Wheat1[J]. Crop Science, 1984, 24(4): 779-782.
DOI URL |
| [18] |
MACGREGOR D R, KENDALL S L, FLORANCE H, et al. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism[J]. New Phytologist, 2015, 205(2): 642-652.
DOI URL |
| [19] | 袁仁长. 防止水稻制种穗发芽的几项措施[J]. 种子世界, 1986(6): 17. |
| YUAN R C. Several measures to prevent pre-harvest sprouting of rice seed[J]. Seed World, 1986(6): 17. (in Chinese) | |
| [20] |
HAKATA M, KURODA M, MIYASHITA T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117.
DOI URL |
| [21] |
ZHU G H, YE N H, ZHANG J H. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis[J]. Plant and Cell Physiology, 2009, 50(3): 644-651.
DOI URL |
| [22] |
TOH S, IMAMURA A, WATANABE A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J]. Plant Physiology, 2008, 146(3): 1368-1385.
DOI URL |
| [23] |
WANG Q, HILLWIG M L, WU Y S, et al. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism[J]. Plant Physiology, 2012, 158(3): 1418-1425.
DOI URL |
| [24] |
MITSUI T, YAMAGUCHI J, AKAZAWA T. Physicochemical and serological characterization of rice alpha-amylase isoforms and identification of their corresponding genes[J]. Plant Physiology, 1996, 110(4): 1395-1404.
DOI URL |
| [1] | ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839. |
| [2] | PEI Huimin, WU Mingming, ZHAI Rongrong, YE Jing, JIN Yue, ZHU Yi, HOU Jianjun, ZHU Guofu, YE Shenghai. Research progress on gene function and breeding of low-cadmium rice cultivars [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2012-2020. |
| [3] | TAN Shiyi, YU Guohong, XUE Xianglei, ZHAO Yinglei, XU Baoyu, ZHANG Chenghao. Design and experiment of tray handling device for industrialized rice seedling raising [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1545-1555. |
| [4] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [5] | LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318. |
| [6] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [7] | ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158. |
| [8] | LIU Qihua, SUN Zhaowen, ZHENG Chongke. Effects of nitrogen management on absorption and allocation of microelements in above-ground parts of dry direct-sowing rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 987-997. |
| [9] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
| [10] | SONG Xinlu, FAN Shuhong, WU Guangqi, ZHAN Mengqi, HOU Qian, LI Mingyue, XU Yan. Effects of combined copper-phenanthrene pollution on physiological characteristics and pollutant accumulation of rice roots at tillering stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 521-529. |
| [11] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [12] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [13] | LI Guiping, XU Xiaomei, LU Lizhi. Rice-duck farming and its environmental effects [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 643-653. |
| [14] | WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744. |
| [15] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||