Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (3): 736-744.DOI: 10.3969/j.issn.1004-1524.20240225
• Review • Previous Articles
WU Jiaqi1(), ZHU Xueming2, BAO Jiandong2, WANG Caoyi3, ZHOU Xiaoyu4, LI Lin2,*(
), LIN Fucheng2,*(
)
Received:
2024-03-08
Online:
2025-03-25
Published:
2025-04-02
CLC Number:
WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744.
微生物 Microorganisms | 来源 Source | 作用机理 Mechanism |
---|---|---|
哈茨木霉 Trichoderma harzianum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
绿色木霉 Trichoderma viride | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
棘孢木霉 Trichoderma asperullum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
柿假尾孢 Pseudocercospora kaki | 茶树叶子 Tea leaf | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枝状枝孢 Cladosporium cladosporioides | 水稻叶片 Rice leaf | 降低稻瘟病菌致病性 Reduce the pathogenicity of rice blast fungus[ |
酵母CMY045 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus |
酵母CMY018 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
链霉菌RM-1-138 Streptomyces philanthi | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
球形链霉菌JK-1 Streptomyces globisporus | 受污染的真菌培养板 Contaminated fungal culture plates | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
灰褐色链霉菌 Streptomyces griseofuscus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
酒红土褐链霉菌 Streptomyces vinaceusdrappus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
坚强芽孢杆菌E65 Bacillus firmus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
蜡样芽孢杆菌 Bacillus cereus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌 Bacillus subtillis | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌SYX04 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌SYX20 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌DL76 Bacillus subtillis | 稻田根际 Rice field rhizosphere | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
Table 1 Types and methods of microbial control of rice blast
微生物 Microorganisms | 来源 Source | 作用机理 Mechanism |
---|---|---|
哈茨木霉 Trichoderma harzianum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
绿色木霉 Trichoderma viride | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
棘孢木霉 Trichoderma asperullum | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
柿假尾孢 Pseudocercospora kaki | 茶树叶子 Tea leaf | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枝状枝孢 Cladosporium cladosporioides | 水稻叶片 Rice leaf | 降低稻瘟病菌致病性 Reduce the pathogenicity of rice blast fungus[ |
酵母CMY045 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus |
酵母CMY018 Saccharomyces | 蔬菜果实表面和水稻叶片 Vegetable fruit surface and rice leaves | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
链霉菌RM-1-138 Streptomyces philanthi | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
球形链霉菌JK-1 Streptomyces globisporus | 受污染的真菌培养板 Contaminated fungal culture plates | 减少稻瘟病菌附着胞形成 Reduce the formation of attachment cells of rice blast fungus[ |
灰褐色链霉菌 Streptomyces griseofuscus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
酒红土褐链霉菌 Streptomyces vinaceusdrappus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
坚强芽孢杆菌E65 Bacillus firmus | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ | |
蜡样芽孢杆菌 Bacillus cereus | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌 Bacillus subtillis | 根际土壤 Rhizosphere soil | 抑制稻瘟病菌菌丝生长 Inhibit the mycelial growth of rice blast fungus[ |
枯草芽孢杆菌SYX04 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌SYX20 Bacillus subtillis | 水稻叶片 Rice leaf | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
枯草芽孢杆菌DL76 Bacillus subtillis | 稻田根际 Rice field rhizosphere | 抑制稻瘟病菌分生孢子萌发和附着胞形成 Inhibit the germination of conidia and attachment cell formation of rice blast fungus[ |
[1] | SKAMNIOTI P, GURR S J. Against the grain: safeguarding rice from rice blast disease[J]. Trends in Biotechnology, 2009, 27(3): 141-150. |
[2] | HOWARD R J, VALENT B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea[J]. Annual Review of Microbiology, 1996, 50: 491-512. |
[3] | DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. |
[4] | ZHANG C X, ZHANG X X, SHEN S H. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131[J]. World Journal of Microbiology & Biotechnology, 2014, 30(6): 1763-1774. |
[5] | DAGDAS Y F, YOSHINO K, DAGDAS G, et al. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae[J]. Science, 2012, 336(6088): 1590-1595. |
[6] | XIONG Z Q, TU X R, WEI S J, et al. In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea[J]. Biotechnology Letters, 2013, 35(9): 1475-1479. |
[7] | KOMÁREK M, EVA Č, CHRASTNÝ V, et al. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects[J]. Environment International, 2010, 36(1): 138-151. |
[8] | CHUNG S, KONG H, BUYER J S, et al. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper[J]. Applied Microbiology and Biotechnology, 2008, 80(1): 115-123. |
[9] | TODOROVA S, KOZHUHAROVA L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil[J]. World Journal of Microbiology & Biotechnology, 2010, 26(7): 1207-1216. |
[10] | SHODA M. Bacterial control of plant diseases[J]. Journal of Bioscience and Bioengineering, 2000, 89(6): 515-521. |
[11] | CHAN Y K, MCCORMICK W A, SEIFERT K A. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species[J]. Canadian Journal of Microbiology, 2003, 49(4): 253-262. |
[12] | MORAES BAZIOLI J, BELINATO J R, COSTA J H, et al. Biological control of citrus postharvest phytopathogens[J]. Toxins, 2019, 11(8): 460. |
[13] | PUSZTAHELYI T, HOLB I J, PÓCSI I. Secondary metabolites in fungus-plant interactions[J]. Frontiers in Plant Science, 2015, 6: 573. |
[14] | KHAN R A A, NAJEEB S, MAO Z C, et al. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode[J]. Microorganisms, 2020, 8(3): 401. |
[15] | KÖHL J, KOLNAAR R, RAVENSBERG W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy[J]. Frontiers in Plant Science, 2019, 10: 845. |
[16] | LEE S H, OH Y T, LEE D Y, et al. Large-scale screening of the plant extracts for antifungal activity against the plant pathogenic fungi[J]. The Plant Pathology Journal, 2022, 38(6): 685-691. |
[17] | ARIF, BHOSALE, KUMAR, et al. Natural products-antifungal agents derived from plants[J]. Journal of Asian Natural Products Research, 2009, 11(7): 621-638. |
[18] | YOON M Y, CHA B, KIM J C. Recent trends in studies on botanical fungicides in agriculture[J]. The Plant Pathology Journal, 2013, 29(1): 1-9. |
[19] | LENEVEU-JENVRIN C, CHARLES F, BARBA F J, et al. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(17): 2837-2855. |
[20] | CHAKRABORTY M, MAHMUD N U, ULLAH C, et al. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2021, 41(7): 994-1022. |
[21] | WALTERS D, WALSH D, NEWTON A, et al. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors[J]. Phytopathology, 2005, 95(12): 1368-1373. |
[22] | PRESS C M, LOPER J E, KLOEPPER J W. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber[J]. Phytopathology, 2001, 91(6): 593-598. |
[23] | BÉRDY J. Bioactive microbial metabolites[J]. The Journal of Antibiotics, 2005, 58(1): 1-26. |
[24] | MAUCH-MANI B, BACCELLI I, LUNA E, et al. Defense priming: an adaptive part of induced resistance[J]. Annual Review of Plant Biology, 2017, 68: 485-512. |
[25] | SHA Y X, WANG Q, LI Y. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast[J]. SpringerPlus, 2016, 5(1): 1238. |
[26] | LI L W, LI Y R, LU K L, et al. Bacillus subtilis KLBMPGC81 suppresses appressorium-mediated plant infection by altering the cell wall integrity signaling pathway and multiple cell biological processes in Magnaporthe oryzae[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 983757. |
[27] | KRINGS M, TAYLOR T N, HASS H, et al. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses[J]. The New Phytologist, 2007, 174(3): 648-657. |
[28] | SIRRENBERG A, GÖBEL C, GROND S, et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131(4): 581-589. |
[29] | SHERAMETI I, SHAHOLLARI B, VENUS Y, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry, 2005, 280(28): 26241-26247. |
[30] | Bartholdy, BERRECK M, HASELWANDTER K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte[J]. Biometals, 2001, 14(1): 33-42. |
[31] | HARMAN G E. Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity[J]. New Phytologist, 2011, 189(3): 647-649. |
[32] | LI X R, WAJJIHA B, ZHANG P H, et al. Serendipita indica chitinase protects rice from the blast and bakanae diseases[J]. Journal of Basic Microbiology, 2023, 63(7): 734-745. |
[33] | LI H, GUAN Y, DONG Y L, et al. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae[J]. PLoS One, 2018, 13(10): e0203505. |
[34] | KORPI A, JÄRNBERG J, PASANEN A L. Microbial volatile organic compounds[J]. Critical Reviews in Toxicology, 2009, 39(2): 139-193. |
[35] | MING Q L, HAN T, LI W C, et al. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza[J]. Phytomedicine, 2012, 19(3/4): 330-333. |
[36] | VIZCAÍNO J A, SANZ L, CARDOZA R E, et al. Detection of putative peptide synthetase genes in Trichoderma species: application of this method to the cloning of a gene from T. harzianum CECT 2413[J]. FEMS Microbiology Letters, 2005, 244(1): 139-148. |
[37] | KESWANI C, SINGH H B, HERMOSA R, et al. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents[J]. Applied Microbiology and Biotechnology, 2019, 103(23/24): 9287-9303. |
[38] | MAZZEI P, VINALE F, WOO S L, et al. Metabolomics by proton high-resolution magic-angle-spinning nuclear magnetic resonance of tomato plants treated with two secondary metabolites isolated from Trichoderma[J]. Journal of Agricultural and Food Chemistry, 2016, 64(18): 3538-3545. |
[39] | AIDEMARK M, ANDERSSON C J, RASMUSSON A G, et al. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells[J]. BMC Plant Biology, 2009, 9: 27. |
[40] | JOHANSSON F I, MICHALECKA A M, MØLLER I M, et al. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria[J]. Biochemical Journal, 2004, 380(Pt 1): 193-202. |
[41] | MATIC S, GEISLER D A, MØLLER I M, et al. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells[J]. Biochemical Journal, 2005, 389(Pt 3): 695-704. |
[42] | 阮盈盈, 刘峰. 木霉菌生物防治作用机制与应用研究进展[J]. 浙江农业科学, 2020, 61(11): 2290-2294. |
RUAN Y Y, LIU F. Research progress of biological control mechanism and application of Trichoderma[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(11): 2290-2294. (in Chinese) | |
[43] | SEGARRA G, CASANOVA E, AVILÉS M, et al. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron[J]. Microbial Ecology, 2010, 59(1): 141-149. |
[44] | SHEN Q, LIANG M L, YANG F, et al. Ferroptosis contributes to developmental cell death in rice blast[J]. New Phytologist, 2020, 227(6): 1831-1846. |
[45] | 李梅, 田莹, 蒋细良. 植物内生木霉菌研究进展[J]. 中国生物防治学报, 2020, 36(2): 155-162. |
LI M, TIAN Y, JIANG X L. Advances in research on endophytic Trichoderma in plants[J]. Chinese Journal of Biological Control, 2020, 36(2): 155-162. (in Chinese with English abstract) | |
[46] | 林志伟, 孙冬梅, 迟丽. 黄绿木霉菌发酵液对水稻防御酶的影响[J]. 江苏农业科学, 2015, 43(1): 121-123. |
LIN Z W, SUN D M, CHI L. Effects of Trichoderma aureoviride fermentation broth on rice defense enzymes[J]. Jiangsu Agricultural Sciences, 2015, 43(1): 121-123. (in Chinese) | |
[47] | 卢宣君, 苏珍珠, 刘小红, 等. 稻瘟病菌致病机制及绿色防控新策略[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 721-730. |
LU X J, SU Z Z, LIU X H, et al. Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2022, 48(6): 721-730. (in Chinese with English abstract) | |
[48] | YUAN Z L, LIN F C, ZHANG C L, et al. A new species of Harpophora(Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte[J]. FEMS Microbiology Letters, 2010, 307(1): 94-101. |
[49] | SU Z Z, DAI M D, ZHU J N, et al. Dark septate endophyte Falciphora oryzae-assisted alleviation of cadmium in rice[J]. Journal of Hazardous Materials, 2021, 419: 126435. |
[50] | XU X H, SU Z Z, WANG C, et al. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte[J]. Scientific Reports, 2014, 4: 5783. |
[51] | 王国迪, 陈瑞, 汪彦欣, 等. 内生真菌稻镰状瓶霉对直播稻稻瘟病的防治效果[J]. 中国稻米, 2019, 25(4): 68-69. |
WANG G D, CHEN R, WANG Y X, et al. Control efficiency of endophytic fungus Falciphora oryzae to rice blast of direct seeding rice[J]. China Rice, 2019, 25(4): 68-69. (in Chinese with English abstract) | |
[52] | RAIS A, SHAKEEL M, MALIK K, et al. Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions[J]. Microbiological Research, 2018, 208: 54-62. |
[53] | SCHUMACHER R W, TALMAGE S C, MILLER S A, et al. Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium[J]. Journal of Natural Products, 2003, 66(9): 1291-1293. |
[54] | LUO X, CHEN Y, WANG J H, et al. Biocontrol potential of Burkholderia sp. BV6 against the rice blast fungus Magnaporthe oryzae[J]. Journal of Applied Microbiology, 2022, 133(2): 883-897. |
[55] | ZHANG Y F, YANG Y M, ZHANG L Y, et al. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide[J]. Frontiers in Microbiology, 2023, 14: 1201624. |
[56] | LIU W, WANG J W, LI S, et al. Genomic and biocontrol potential of the crude lipopeptide by Streptomyces bikiniensis HD-087 against Magnaporthe oryzae[J]. Frontiers in Microbiology, 2022, 13: 888645. |
[57] | BOUKAEW S, CHEIRSILP B, YOSSAN S, et al. Utilization of palm oil mill effluent as a novel substrate for the production of antifungal compounds by Streptomyces philanthi RM-1-138 and evaluation of its efficacy in suppression of three strains of oil palm pathogen[J]. Journal of Applied Microbiology, 2022, 132(3): 1990-2003. |
[58] | XU T, CAO L D, ZENG J R, et al. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen[J]. Pesticide Biochemistry and Physiology, 2019, 160: 58-69. |
[59] | CHAIHARN M, THEANTANA T, PATHOM-AREE W. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi[J]. Pathogens, 2020, 9(2): 126. |
[60] | KGOSI V T, BAO T T, YING Z, et al. Anti-fungal analysis of Bacillus subtilis DL76 on conidiation, appressorium formation, growth, multiple stress response, and pathogenicity in Magnaporthe oryzae[J]. International Journal of Molecular Sciences, 2022, 23(10): 5314. |
[61] | SAIKIA R, GOGOI D K, MAZUMDER S, et al. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India[J]. Microbiological Research, 2011, 166(3): 216-225. |
[62] | HÖFTE M, ALTIER N. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems[J]. Research in Microbiology, 2010, 161(6): 464-471. |
[63] | BORDIEC S, PAQUIS S, LACROIX H, et al. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions[J]. Journal of Experimental Botany, 2011, 62(2): 595-603. |
[64] | XIONG Z Q, TU X R, WEI S J, et al. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani[J]. PLoS One, 2013, 8(8): e73884. |
[65] | LIM S M, YOON M Y, CHOI G J, et al. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi[J]. The Plant Pathology Journal, 2017, 33(5): 488-498. |
[66] | ZHANG L L, SUN C M. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Applied and Environmental Microbiology, 2018, 84(18): e00445-18. |
[67] | TENDULKAR S R, SAIKUMARI Y K, PATEL V, et al. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea[J]. Journal of Applied Microbiology, 2007, 103(6): 2331-2339. |
[68] | CHAKRABORTY M, MAHMUD N U, GUPTA D R, et al. Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae triticum[J]. Frontiers in Microbiology, 2020, 11: 665. |
[69] | ZHANG H Z, ZHANG C H, XIANG X L, et al. Uptake and transport of antibiotic kasugamycin in castor bean (Ricinus communis L.) seedlings[J]. Frontiers in Microbiology, 2022, 13: 948171. |
[70] | XU L L, HAN T, WU J Z, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus[J]. Phytomedicine, 2009, 16(6/7): 609-616. |
[71] | LIU X L, DONG M S, CHEN X H, et al. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin[J]. Applied Microbiology and Biotechnology, 2008, 78(2): 241-247. |
[72] | VERMA V C, GOND S K, KUMAR A, et al. Endophytic actinomycetes from Azadirachta indica A. juss.: isolation, diversity, and anti-microbial activity[J]. Microbial Ecology, 2009, 57(4): 749-756. |
[73] | BECKER J, LIERMANN J C, OPATZ T, et al. GKK1032A2, a secondary metabolite from Penicillium sp. IBWF-029-96, inhibits conidial germination in the rice blast fungus Magnaporthe oryzae[J]. The Journal of Antibiotics, 2012, 65(2): 99-102. |
[74] | VU T T, KIM H, TRAN V K, et al. In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria[J]. BMC Complementary and Alternative Medicine, 2016, 16: 32. |
[75] | FRY F H, OKARTER N, BAYNTON-SMITH C, et al. Use of a substrate/alliinase combination to generate antifungal activity in situ[J]. Journal of Agricultural and Food Chemistry, 2005, 53(3): 574-580. |
[76] | BOEKE S J, BOERSMA M G, ALINK G M, et al. Safety evaluation of neem (Azadirachta indica) derived pesticides[J]. Journal of Ethnopharmacology, 2004, 94(1): 25-41. |
[77] | BRAUN H, WOITSCH L, HETZER B, et al. Trichoderma harzianum: inhibition of mycotoxin producing fungi and toxin biosynthesis[J]. International Journal of Food Microbiology, 2018, 280: 10-16. |
[78] | ZHANG F Z, LI X M, YANG S Q, et al. Thiocladospolides A-D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3[J]. Journal of Natural Products, 2019, 82(6): 1535-1541. |
[79] | 王营, 李浩华, 谭国慧, 等. 广藿香内生真菌类群分析及其抗菌活性研究[J]. 中国中药杂志, 2017, 42(4): 657-662. |
WANG Y, LI H H, TAN G H, et al. Study on communities of endophytic fungi from Pogostemon cablin and their antimicrobial activities[J]. China Journal of Chinese Materia Medica, 2017, 42(4): 657-662. | |
[80] | ZHANG G Y, ZHANG H B, LI S M, et al. Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation[J]. Applied and Environmental Microbiology, 2012, 78(7): 2393-2401. |
[81] | MORANDINI L, CAULIER S, BRAGARD C, et al. Bacillus cereus sensu lato antimicrobial arsenal: an overview[J]. Microbiological Research, 2024, 283: 127697. |
[82] | WEI Y, LI L H, HU W J, et al. Suppression of rice blast by bacterial strains isolated from cultivated soda saline-sodic soils[J]. International Journal of Environmental Research and Public Health, 2020, 17(14): 5248. |
[83] | FONTANA D C, DE PAULA S, TORRES A G, et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses[J]. Pathogens, 2021, 10(5): 570. |
[84] | SANTOS M, CESANELLI I, DIÁNEZ F, et al. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses[J]. Journal of Fungi, 2021, 7(11): 939. |
[1] | HOU Dong, LI Yali, YUE Hongzhong, ZHANG Dongqin, YAO Tuo, HUANG Shuchao, YANG Haixing. Effects of microbial fertilizer instead of partial chemical fertilizer on yield, quality and soil microorganisms of cauliflower [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 589-599. |
[2] | WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315. |
[3] | WU Xiaomeng, XU Yue, CHENG Honghao, CHEN Shiyan, ZHOU Xiazhi, ZOU Yunding, BI Shoudong. Spatial and quantitative relationships between Ectropis obliqua hypulina and their natural enemy of spiders in 6 tea gardens [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1349-1359. |
[4] | YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395. |
[5] | XIAO Xiaolan, ZHANG Hao, FU Chuanhui, LIU Hao, RUAN Wenquan. Screening thermophiles to promote co-composting of biogas residue and black soldier fly larval frass [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 647-657. |
[6] | ZHOU Li, GUI Linsheng. Effect of wheat particle dosage in diet on rumen internal environment of male Tibetan lambs [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2543-2554. |
[7] | WANG Xiaonan, FENG Xiaoxiao, SHI Bin, CHEN Enlei, CHEN Mengli, ZHENG Yongli, WU Huiming. Identification of Bacillus velezensis ZN-S10 and its antification effect on tomato bacterial wilt [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2636-2644. |
[8] | HAN Mingming, ZHAN Wei, HUANG Fuyong, LI Fangxing, LOU Bao. Composition, classification and correlation analysis of bacteria in digestive tract of Opsariichthys bidens under sand filter mode [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2286-2298. |
[9] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[10] | SUN Wenyan, LIU Xiaogang, ZHANG Wenhui, LI Huiyong, WU Lang, YANG Qiliang, XIONG Guomei. Optimization of drip fertigation scheme for Coffea arabica based on soil quality index [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 566-573. |
[11] | QIAN Xiaohui, CHEN Longqing, LI Shuangqin, SHI Rui. Analysis on alkaloids metabolites of two edible roses [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 454-463. |
[12] | WANG Xian, LIU Fang, WEI Xiaohong, ZHU Xiaolin, WANG Baoqiang. Study on resistance of different tomato germplasm materials to yellow leaf curl virus disease [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2085-2097. |
[13] | SUN Xiaojun, SHEN Qi, WU Yifei, YAO Xiaohong, LI Yuancheng, SUN Hong, WANG Xin, TANG Jiangwu, GE Xiangyang. Screening and utilization of ammonia-nitrogen-degrading microorganism [J]. , 2020, 32(9): 1683-1691. |
[14] | LIN Hui, ZHANG Jin, YUAN Qianyu, YE Jing, SUN Wanchun, YU Yijun, YU Qiaogang, MA Junwei. Improving microbial system of continuous cropping soil by addition of Trichoderma asperellum and ultrafine powder humus [J]. , 2020, 32(6): 1060-1069. |
[15] | LIU Tao, ZHANG Chipeng, HAO Yaoling, QIU Lijuan, HUANG Chenchen. Effects of sulfate on reduction and transformation of soil iron minerals and arsenic release [J]. , 2020, 32(4): 678-684. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||