Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 647-657.DOI: 10.3969/j.issn.1004-1524.2023.03.18
• Environmental Science • Previous Articles Next Articles
XIAO Xiaolan1(), ZHANG Hao1, FU Chuanhui2, LIU Hao1, RUAN Wenquan1,*(
)
Received:
2022-03-15
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
XIAO Xiaolan, ZHANG Hao, FU Chuanhui, LIU Hao, RUAN Wenquan. Screening thermophiles to promote co-composting of biogas residue and black soldier fly larval frass[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 647-657.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.18
原料 Raw material | 含水率 Moisture content/% | 总碳 Total C/ (g·kg-1) | 总氮 Total N/ (g·kg-1) | C/N | pH | P2O5/ (g·kg-1) | K2O/ (g·kg-1) |
---|---|---|---|---|---|---|---|
沼渣Biogas residue | 89.16±0.52 | 274.4±4.8 | 40.7±1.0 | 6.52±0.01 | 8.51±0.12 | 68.6±2.4 | 40.6±2.6 |
虫粪Larval frass | 59.88±0.25 | 336.9±14.5 | 39.9±1.1 | 8.12±0.20 | 9.12±0.12 | 65.4±1.9 | 64.3±5.3 |
水稻秸秆Rice straw | 12.15±0.06 | 396.6±14.6 | 12.0±0.7 | 32.65±0.69 | — | 2.9±0.8 | 94.4±2.9 |
Table 1 Basic properties of raw materials for composting
原料 Raw material | 含水率 Moisture content/% | 总碳 Total C/ (g·kg-1) | 总氮 Total N/ (g·kg-1) | C/N | pH | P2O5/ (g·kg-1) | K2O/ (g·kg-1) |
---|---|---|---|---|---|---|---|
沼渣Biogas residue | 89.16±0.52 | 274.4±4.8 | 40.7±1.0 | 6.52±0.01 | 8.51±0.12 | 68.6±2.4 | 40.6±2.6 |
虫粪Larval frass | 59.88±0.25 | 336.9±14.5 | 39.9±1.1 | 8.12±0.20 | 9.12±0.12 | 65.4±1.9 | 64.3±5.3 |
水稻秸秆Rice straw | 12.15±0.06 | 396.6±14.6 | 12.0±0.7 | 32.65±0.69 | — | 2.9±0.8 | 94.4±2.9 |
Fig.5 Three dimensional fluorescence spectra raw material (a), final composting product in blank group(b) and final composting product in inoculation group (c) EX, Excitation wavelength; EM, Emission wavelength
Fig.6 Changes of relative abundance of bacteria at phylum level (a) and fungi at order level (b) during composting B and I represent the blank group and inoculation group, respectively. 5,15, 30 represent composting samples on 5, 15, 30 d, respectively.
[1] | 郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673-682. |
HAO X D, ZHOU P, CAO D Q. Analyses of disposal methods and carbon emissions of food wastes[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 673-682. (in Chinese with English abstract) | |
[2] | 梅彩虹. 餐厨垃圾固体处理与资源化利用分析[J]. 环境与发展, 2018, 30(10): 56. |
MEI C H. Analysis of solid waste treatment and resource utilization of kitchen waste[J]. Environment and Development, 2018, 30(10): 56. (in Chinese with English abstract) | |
[3] |
LIU C C, WANG C W, YAO H Y. Comprehensive resource utilization of waste using the black soldier fly (Hermetia illucens(L.)) (Diptera: Stratiomyidae)[J]. Animals: an Open Access Journal from MDPI, 2019, 9(6): 349.
DOI URL |
[4] |
BESKIN K V, et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions[J]. Waste Management, 2018, 74: 213-220.
DOI PMID |
[5] |
LIU N, HOU T, YIN H J, et al. Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting[J]. Journal of Hazardous Materials, 2019, 362: 258-265.
DOI PMID |
[6] |
NAKASAKI K, ARAYA S, MIMOTO H, et al. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting[J]. Bioresource Technology, 2013, 144: 521-528.
DOI URL |
[7] | 李昌宁, 苏明, 姚拓, 等. 微生物菌剂对猪粪堆肥过程中堆肥理化性质和优势细菌群落的影响[J]. 植物营养与肥料学报, 2020, 26(9): 1600-1611. |
LI C N, SU M, YAO T, et al. Effects of microbial inoculation on compost physical and chemical properties and dominant bacterial communities during composting of pig manure[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1600-1611. (in Chinese with English abstract) | |
[8] | 钱玉婷, 杜静, 曹云, 等. 接种嗜热菌促进鸡粪超高温堆肥处理的效果[J]. 江苏农业科学, 2018, 46(23): 321-325. |
QIAN Y T, DU J, CAO Y, et al. Impact of inoculating thermophilic bacteria on promotion of hyperthermia composting of chicken manure[J]. Jiangsu Agricultural Sciences, 2018, 46(23): 321-325. (in Chinese) | |
[9] | 王玉, 张晶, 曹云, 等. 极端嗜热功能菌筛选及其促进堆肥腐熟效果研究[J]. 农业环境科学学报, 2020, 39(7): 1633-1642. |
WANG Y, ZHANG J, CAO Y, et al. Screening of functional extreme thermophiles and their effects on improving the maturation of composting[J]. Journal of Agro-Environment Science, 2020, 39(7): 1633-1642. (in Chinese with English abstract) | |
[10] | 马放, 冯玉杰, 任南琪. 环境生物技术[M]. 北京: 化学工业出版社, 2003. |
[11] | 徐谞, 王心怡, 王定一, 等. 接种高温芽孢杆菌促进堆肥腐熟研究[J]. 土壤通报, 2020, 51(5): 1134-1141. |
XU X, WANG X Y, WANG D Y, et al. Effects of inoculation of thermophiles Bacillus strains on composting efficiency[J]. Chinese Journal of Soil Science, 2020, 51(5): 1134-1141. (in Chinese with English abstract) | |
[12] |
XU J Q, JIANG Z W, LI M Q, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. Journal of Environmental Management, 2019, 243: 240-249.
DOI PMID |
[13] |
ZHANG Z P, HU M, BIAN B, et al. Full-scale thermophilic aerobic co-composting of blue-green algae sludge with livestock faeces and straw[J]. Science of the Total Environment, 2021, 753: 142079.
DOI URL |
[14] |
白玲, 宋飞跃, 季蒙蒙, 等. 不同调理剂对秸秆沼渣堆肥的影响[J]. 浙江农业学报, 2020, 32(1): 124-133.
DOI |
BAI L, SONG F Y, JI M M, et al. Effects of different bulking agents on compost of straw biogas residue[J]. Acta Agriculturae Zhejiangensis, 2020, 32(1): 124-133. (in Chinese with English abstract)
DOI |
|
[15] |
WU J Q, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191-199.
DOI PMID |
[16] |
BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment: a review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.
DOI URL |
[17] |
YU J, GU J, WANG X J, et al. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting[J]. Bioresource Technology, 2020, 313: 123664.
DOI URL |
[18] |
TIQUIA S M, TAM N F Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge[J]. Bioresource Technology, 1998, 65(1/2): 43-49.
DOI URL |
[19] |
NAKHSHINIEV B, BIDDINIKA M K, GONZALES H B, et al. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity[J]. Bioresource Technology, 2014, 151: 306-313.
DOI PMID |
[20] | WEI Y S, FAN Y B, WANG M J, et al. Composting and compost application in China[J]. Resources, Conservation and Recycling, 2000, 30(4): 277-300. |
[21] | INSAM H, DE BERTOLDI M. Microbiology of the composting process[J]. Waste Management Series, 2007, 8: 25-48. |
[22] |
ZMORA-NAHUM S, MARKOVITCH O, TARCHITZKY J, et al. Dissolved organic carbon (DOC) as a parameter of compost maturity[J]. Soil Biology and Biochemistry, 2005, 37(11): 2109-2116.
DOI URL |
[23] |
ZHU N, ZHU Y Y, KAN Z X, et al. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw[J]. Bioresource Technology, 2021, 341: 125842.
DOI URL |
[24] | SENESI N, PLAZA C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments[J]. CLEAN:Soil, Air, Water, 2007, 35(1): 26-41. |
[25] | 李孟婵, 张鹤, 杨慧珍, 等. 不同原料好氧堆肥过程中碳转化特征及腐殖质组分的变化[J]. 干旱地区农业研究, 2019, 37(2): 81-87. |
LI M C, ZHANG H, YANG H Z, et al. Effects of different compost materials on carbon transformation and the change of humus during composting process[J]. Agricultural Research in the Arid Areas, 2019, 37(2): 81-87. (in Chinese with English abstract) | |
[26] |
LAOR Y, AVNIMELECH Y. Fractionation of compost-derived dissolved organic matter by flocculation process[J]. Organic Geochemistry, 2002, 33(3): 257-263.
DOI URL |
[27] |
ZHOU Y, SELVAM A, WONG J W C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues[J]. Bioresource Technology, 2014, 168: 229-234.
DOI PMID |
[28] | 崔玉波, 孙红杰, 杨少华, 等. 污泥生态稳定化过程中的腐殖质变化特征[J]. 安全与环境学报, 2013, 13(3): 90-92. |
CUI Y B, SUN H J, YANG S H, et al. Changing humus features in the process of sewage sludge ecological stabilization[J]. Journal of Safety and Environment, 2013, 13(3): 90-92. (in Chinese with English abstract) | |
[29] |
WANG C, TU Q P, DONG D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. Journal of Hazardous Materials, 2014, 280: 409-416.
DOI PMID |
[30] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
DOI URL |
[31] | SONG C H, LI M X, XI B D, et al. Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques[J]. International Biodeterioration & Biodegradation, 2015, 103: 38-50. |
[32] |
KONG Z J, WANG X Q, WANG M M, et al. Bacterial ecosystem functioning in organic matter biodegradation of different composting at the thermophilic phase[J]. Bioresource Technology, 2020, 317: 123990.
DOI URL |
[33] |
ZHANG L L, LI L J, PAN X G, et al. Enhanced growth and activities of the dominant functional microbiota of chicken manure composts in the presence of maize straw[J]. Frontiers in Microbiology, 2018, 9: 1131.
DOI PMID |
[34] |
WANG C, DONG D, WANG H S, et al. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition[J]. Biotechnology for Biofuels, 2016, 9: 22.
DOI PMID |
[35] |
ZHANG L H, DONG H R, ZHANG J C, et al. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: relative contributions of ammonia-oxidizing bacteria and Archaea to nitrogen conservation[J]. Bioresource Technology, 2019, 287: 121463.
DOI URL |
[1] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[2] | SUN Wenyan, LIU Xiaogang, ZHANG Wenhui, LI Huiyong, WU Lang, YANG Qiliang, XIONG Guomei. Optimization of drip fertigation scheme for Coffea arabica based on soil quality index [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 566-573. |
[3] | SUN Xiaojun, SHEN Qi, WU Yifei, YAO Xiaohong, LI Yuancheng, SUN Hong, WANG Xin, TANG Jiangwu, GE Xiangyang. Screening and utilization of ammonia-nitrogen-degrading microorganism [J]. , 2020, 32(9): 1683-1691. |
[4] | LIN Hui, ZHANG Jin, YUAN Qianyu, YE Jing, SUN Wanchun, YU Yijun, YU Qiaogang, MA Junwei. Improving microbial system of continuous cropping soil by addition of Trichoderma asperellum and ultrafine powder humus [J]. , 2020, 32(6): 1060-1069. |
[5] | LIU Tao, ZHANG Chipeng, HAO Yaoling, QIU Lijuan, HUANG Chenchen. Effects of sulfate on reduction and transformation of soil iron minerals and arsenic release [J]. , 2020, 32(4): 678-684. |
[6] | WANG Baojun, CHENG Wangda, CHEN Gui, SHEN Yaqiang, SHEN Meng, YUAN Ye, WANG Lei, ZHANG Hongmei. Effects of nitrogen fertilizer regulation on soil properties of paddy fields and rice yield with full amount returning of straw in Northern Zhejiang [J]. , 2020, 32(2): 183-190. |
[7] | LI Ruyi, YIN Junfeng, ZOU Chun. Research status of Kombucha in the world [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2291-2302. |
[8] | JIN Lei, WANG Lizhi, WANG Zhisheng, XUE Bai, PENG Quanhui. Differences in jejunum microbes of goats with different phosphorus true digestibility [J]. , 2019, 31(7): 1057-1065. |
[9] | WANG Qingxia, CHEN Xijing, YU Man, SHEN Alin. Research progress on effects of straw returning on nitrogen cycling microbes and functional genes in paddy soil [J]. , 2019, 31(2): 333-342. |
[10] | WANG Peipei, YANG Hua, DAI Xianjun, GUI Guohong, XIAO Yingping. Microbial community structure and drug resistance gene on water, ground and surface of slaughtering equipment in poultry slaughterhouse [J]. , 2018, 30(7): 1249-1258. |
[11] | LIANG Jingang, JIAO Yue, LIU Pengcheng, ZHANG Xiujie. Arbuscular mycorrhizal fungi as a potential indicator to assess effects of genetically modified crops on soil microorganisms [J]. , 2018, 30(7): 1267-1272. |
[12] | ZHANG Lirong, YANG Haiming, GONG Daoqing, XIAO Xia, TANG Xuhua, WANG Zhiyue. Effects of diets supplemented with Bifidobacterium lactis on cecum microorganism diversity of layer chicks analyzed by Illumina MiSeq sequencing technology [J]. , 2018, 30(10): 1630-1639. |
[13] | HE Xiangxiang, XIAO Yingping, WU Shenggan, ZHAO Xueping, XIA Xiaodong, YANG Hua. Analysis of microbial contamination and identification of gram negative bacteria and mold in strawberry [J]. , 2017, 29(1): 144-150. |
[14] | WU Ying\|ben, HE Yue\|lin, CHEN Wei, WANG Zhen, XU Li\|juan, YIN Hong\|mei. Isolation, identification and degradation characteristics of a novel phosphate\|dissolving fungus strain Galactomyces geotrichum P14 [J]. , 2015, 27(4): 625-. |
[15] | GE Jian1, YANG Cui\|jun2, LIU Gui\|he1, *, YANG Zhi\|min3, BAI Xue\|mei2. Effects of mixed ratio and effective microorganism (EM) addition on the mixed silage quality of alfalfa (Medicago sativa L.) and naked oats (Avena nuda) [J]. , 2015, 27(12): 2093-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||