Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 1139-1148.DOI: 10.3969/j.issn.1004-1524.20240427
• Environmental Science • Previous Articles Next Articles
SU Yang1(), SHANG Xiaolan2, QIAN Zhongming3, WU Lingen3, HUANG Jiaqi3, ZHUANG Haifeng4, ZHAO Yufei4, DANG Hongyang5, XU Lijun3,*(
)
Received:
2024-05-11
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240427
Fig.1 Effects of treatments on soil physicochemical properties Bars marked without the same lowercase or uppercase letters indicate significant (P<0.05) differences within treatments at the tillering stage or the maturity stage, respectively. The same as below.
样品 Sample | Ace指数 Ace index | Chao指数 Chao index | 香农指数 Shannon index | 覆盖度 Coverage/% |
---|---|---|---|---|
S1 | 5 640.90 | 5 580.43 | 7.13 | 99.04 |
S2 | 5 760.50 | 5 680.78 | 7.10 | 98.92 |
S3 | 5 831.73 | 5 730.73 | 7.17 | 98.98 |
S4 | 5 748.72 | 5 696.04 | 7.20 | 99.02 |
S5 | 6 211.07 | 6 142.42 | 7.30 | 98.86 |
Table 1 Alpha diversity of soil bacterial communities under treatments
样品 Sample | Ace指数 Ace index | Chao指数 Chao index | 香农指数 Shannon index | 覆盖度 Coverage/% |
---|---|---|---|---|
S1 | 5 640.90 | 5 580.43 | 7.13 | 99.04 |
S2 | 5 760.50 | 5 680.78 | 7.10 | 98.92 |
S3 | 5 831.73 | 5 730.73 | 7.17 | 98.98 |
S4 | 5 748.72 | 5 696.04 | 7.20 | 99.02 |
S5 | 6 211.07 | 6 142.42 | 7.30 | 98.86 |
处理 Treatment | 产量 Yield/ (t·hm-2) | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 地上部干重 Dry weight of aboveground part/(t·hm-2) | 氮素吸收总量 Nitrogen uptake/ (kg·hm-2) | 磷素吸收总量 Phosphorus uptake/ (kg·hm-2) | 钾素吸收总量 Potassium uptake/ (kg·hm-2) |
---|---|---|---|---|---|---|---|
S1 | 5.87 ±0.12 c | 21.72 ±0.16 b | 89.10 ±1.16 b | 9.59 ±0.18 c | 78.86 ±3.62 b | 13.49 ±0.25 d | 72.76 ±5.26 c |
S2 | 6.14 ±0.19 bc | 22.09 ±0.10 a | 91.05 ±0.67 a | 10.15±0.46 bc | 84.38 ±9.05 b | 15.46 ±0.24 c | 82.61±7.02 bc |
S3 | 6.47 ±0.27 ab | 22.05 ±0.18 a | 91.75 ±0.84 a | 10.72 ±0.51 ab | 95.83 ±5.80 a | 16.92 ±0.98 b | 86.74 ±5.13 ab |
S4 | 6.72 ±0.06 a | 21.96 ±0.16 ab | 91.73 ±0.78 a | 11.04 ±0.39 a | 101.62 ±2.27 a | 19.11 ±0.28 a | 92.13 ±3.83 ab |
S5 | 6.84 ±0.29 a | 22.27 ±0.18 a | 92.22 ±0.28 a | 11.34 ±0.19 a | 104.63±1.15 a | 19.49 ±0.91 a | 93.52 ±2.47 a |
Table 2 Effects of treatments on rice growth and nutrient utilization
处理 Treatment | 产量 Yield/ (t·hm-2) | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 地上部干重 Dry weight of aboveground part/(t·hm-2) | 氮素吸收总量 Nitrogen uptake/ (kg·hm-2) | 磷素吸收总量 Phosphorus uptake/ (kg·hm-2) | 钾素吸收总量 Potassium uptake/ (kg·hm-2) |
---|---|---|---|---|---|---|---|
S1 | 5.87 ±0.12 c | 21.72 ±0.16 b | 89.10 ±1.16 b | 9.59 ±0.18 c | 78.86 ±3.62 b | 13.49 ±0.25 d | 72.76 ±5.26 c |
S2 | 6.14 ±0.19 bc | 22.09 ±0.10 a | 91.05 ±0.67 a | 10.15±0.46 bc | 84.38 ±9.05 b | 15.46 ±0.24 c | 82.61±7.02 bc |
S3 | 6.47 ±0.27 ab | 22.05 ±0.18 a | 91.75 ±0.84 a | 10.72 ±0.51 ab | 95.83 ±5.80 a | 16.92 ±0.98 b | 86.74 ±5.13 ab |
S4 | 6.72 ±0.06 a | 21.96 ±0.16 ab | 91.73 ±0.78 a | 11.04 ±0.39 a | 101.62 ±2.27 a | 19.11 ±0.28 a | 92.13 ±3.83 ab |
S5 | 6.84 ±0.29 a | 22.27 ±0.18 a | 92.22 ±0.28 a | 11.34 ±0.19 a | 104.63±1.15 a | 19.49 ±0.91 a | 93.52 ±2.47 a |
[1] | ZHAO Y F, LU Y P, ZHUANG H F, et al. In-situ retention of nitrogen, phosphorus in agricultural drainage and soil nutrients by biochar at different temperatures and the effects on soil microbial response[J]. Science of the Total Environment, 2023, 904: 166292. |
[2] | DU X Z, HAO M, GUO L J, et al. Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China[J]. Agricultural Water Management, 2022, 262: 107403. |
[3] | 漆军, 朱利群, 陈利根, 等. 苏、浙、皖农户秸秆处理行为分析[J]. 资源科学, 2016, 38(6): 1099-1108. |
QI J, ZHU L Q, CHEN L G, et al. Research on the farmers' behavior of straw processing in Jiangsu, Zhejiang and Anhui[J]. Resources Science, 2016, 38(6): 1099-1108. (in Chinese with English abstract) | |
[4] | 房体磊, 李小龙, 刘高峰, 等. 不同秸秆还田方式对烟稻轮作土壤细菌群落多样性和结构的影响[J]. 农业资源与环境学报, 2024, 41(2): 482-492. |
FANG T L, LI X L, LIU G F, et al. Effects of different straw return modes on bacterial diversity and community structure in tobacco-rice rotation soil[J]. Journal of Agricultural Resources and Environment, 2024, 41(2): 482-492. (in Chinese with English abstract) | |
[5] | 钱玉婷, 张应鹏, 杜静, 等. 江苏省秸秆综合利用途径利弊分析及收储运对策研究[J]. 农业工程学报, 2019, 35(22): 154-160. |
QIAN Y T, ZHANG Y P, DU J, et al. Advantages and disadvantages analysis of comprehensive utilization of straw in Jiangsu Province and countermeasure suggestions for collection-storage-transportation system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 154-160. (in Chinese with English abstract) | |
[6] | SCHMIDT H P, KAMMANN C, NIGGLI C, et al. Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality[J]. Agriculture, Ecosystems & Environment, 2014, 191: 117-123. |
[7] | 邢莉彬, 成洁, 耿增超, 等. 不同原料生物炭的理化特性及其作炭基肥缓释载体的潜力评价[J]. 环境科学, 2022, 43(5): 2770-2778. |
XING L B, CHENG J, GENG Z C, et al. Physicochemical properties of biochars prepared from different feedstocks and evaluation of its potential as a slow-release carriers for biochar-based fertilizers[J]. Environmental Science, 2022, 43(5): 2770-2778. (in Chinese with English abstract) | |
[8] | 魏萌涵, 孟自力. 化肥减量下耕作方式和施用秸秆腐熟剂对小麦产量和土壤养分的影响[J]. 江苏农业科学, 2022, 50(15): 68-73. |
WEI M H, MENG Z L. Effects of tillage methods and application of straw ripening agent on wheat yield and soil nutrients under nitrogen reduction[J]. Jiangsu Agricultural Sciences, 2022, 50(15): 68-73. (in Chinese with English abstract) | |
[9] | GAO X Y, LIU W Z, LI X Q, et al. A novel fungal agent for straw returning to enhance straw decomposition and nutrients release[J]. Environmental Technology & Innovation, 2023, 30: 103064. |
[10] | 萨如拉, 杨恒山, 高聚林, 等. 西辽河平原区免耕秸秆还田方式对土壤微生物群落组成的影响[J]. 土壤通报, 2022, 53(5): 1067-1078. |
SA R L, YANG H S, GAO J L, et al. Effects of no tillage straw returning on soil microbial community composition in the West Liaohe Plain[J]. Chinese Journal of Soil Science, 2022, 53(5): 1067-1078. (in Chinese with English abstract) | |
[11] | 农传江, 王宇蕴, 徐智, 等. 有机物料腐熟剂对玉米和水稻秸秆还田效应的影响[J]. 西北农业学报, 2016, 25(1): 34-41. |
NONG C J, WANG Y Y, XU Z, et al. Effects of organic matter-decomposition inoculant on maize and rice straw returning[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(1): 34-41. (in Chinese with English abstract) | |
[12] | 徐枫林, 孙超然, 颜瑾昱, 等. 水稻秸秆还田机械化技术应用研究进展[J]. 湖南农业科学, 2022(5): 101-106. |
XU F L, SUN C R, YAN J Y, et al. Research progress in the application of mechanized rice straw-returning technology[J]. Hunan Agricultural Sciences, 2022(5): 101-106. (in Chinese with English abstract) | |
[13] | 马云波, 许中旗, 张岩, 等. 冀北山区华北落叶松人工林对土壤化学性质的影响[J]. 水土保持学报, 2015, 29(4): 165-170. |
MA Y B, XU Z Q, ZHANG Y, et al. Impact of larch plantation on soil chemical property in north mountain of Hebei[J]. Journal of Soil and Water Conservation, 2015, 29(4): 165-170. (in Chinese with English abstract) | |
[14] | XU T Y, ZHOU Z J, YAN R P, et al. Real-time monitoring method for layered compaction quality of loess subgrade based on hydraulic compactor reinforcement[J]. Sensors, 2020, 20(15): 4288. |
[15] | TAN Z X, LIN C S K, JI X Y, et al. Returning biochar to fields: a review[J]. Applied Soil Ecology, 2017, 116: 1-11. |
[16] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥与腐熟秸秆对盐碱地土壤盐分及燕麦品质的影响[J]. 生态学杂志, 2021, 40(6): 1639-1649. |
LU P N, LIU J H, ZHAO B P, et al. Effects of bio-fertilizer and rotten straw on soil salinity and oat quality in saline-alkaline soil[J]. Chinese Journal of Ecology, 2021, 40(6): 1639-1649. (in Chinese with English abstract) | |
[17] | 袁访, 李开钰, 杨慧, 等. 生物炭施用对黄壤土壤养分及酶活性的影响[J]. 环境科学, 2022, 43(9): 4655-4661. |
YUAN F, LI K Y, YANG H, et al. Effects of biochar application on yellow soil nutrients and enzyme activities[J]. Environmental Science, 2022, 43(9): 4655-4661. (in Chinese with English abstract) | |
[18] | 陈盛, 黄达, 张力, 等. 秸秆还田对土壤理化性质及水肥状况影响的研究进展[J]. 灌溉排水学报, 2022, 41(6): 1-11. |
CHEN S, HUANG D, ZHANG L, et al. The effects of straw incorporation on physicochemical properties of soil: a review[J]. Journal of Irrigation and Drainage, 2022, 41(6): 1-11. (in Chinese with English abstract) | |
[19] | 勉有明, 李荣, 侯贤清, 等. 秸秆还田配施腐熟剂对砂性土壤性质及滴灌玉米生长的影响[J]. 核农学报, 2020, 34(10): 2343-2351. |
MIAN Y M, LI R, HOU X Q, et al. Effects of straw returning combined with decomposition agents on sandy soil properties and growth of maize under drip irrigation[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2343-2351. (in Chinese with English abstract) | |
[20] | 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响[J]. 农业环境科学学报, 2012, 31(11): 2192-2199. |
HAN X Z, ZHU L Q, YANG M F, et al. Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity[J]. Journal of Agro-Environment Science, 2012, 31(11): 2192-2199. (in Chinese with English abstract) | |
[21] | 蔡立群, 牛怡, 罗珠珠, 等. 秸秆促腐还田土壤养分及微生物量的动态变化[J]. 中国生态农业学报, 2014, 22(9): 1047-1056. |
CAI L Q, NIU Y, LUO Z Z, et al. Dynamic characteristics of soil nutrients and soil microbial biomass of field-returned straws at different decay accretion conditions[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1047-1056. (in Chinese with English abstract) | |
[22] | 王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2): 126-133. |
WANG R F, ZHAO L X, SHEN Y J, et al. Research progress on preparing biochar and its effect on soil physio-chemical properties[J]. Journal of Agricultural Science and Technology, 2015, 17(2): 126-133. (in Chinese with English abstract) | |
[23] | MENG J, LIANG S J, TAO M M, et al. Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw[J]. Chemosphere, 2018, 200: 344-350. |
[24] | ZHANG C, ZHAO X, LIANG A J, et al. Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: emphasizing the driving role of core microbial communities and nutrient cycling[J]. Environmental Research, 2023, 228: 115895. |
[25] | HUANG W, WU J F, PAN X H, et al. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in south China[J]. Journal of Integrative Agriculture, 2021, 20(1): 236-247. |
[26] | 王美琦, 刘银双, 黄亚丽, 等. 秸秆还田对土壤微生态环境影响的研究进展[J]. 微生物学通报, 2022, 49(2): 807-816. |
WANG M Q, LIU Y S, HUANG Y L, et al. Research progress on effects of straw incorporation on soil micro-ecological environment[J]. Microbiology China, 2022, 49(2): 807-816. (in Chinese with English abstract) | |
[27] | 武爱莲, 王劲松, 董二伟, 等. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响[J]. 土壤学报, 2019, 56(1): 176-185. |
WU A L, WANG J S, DONG E W, et al. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil[J]. Acta Pedologica Sinica, 2019, 56(1): 176-185. (in Chinese with English abstract) | |
[28] | 赵炎, 袁新生, 唐瑞杰, 等. 添加生物炭对琼北地区双季稻田生物固氮的影响[J]. 环境科学, 2022, 43(12): 5819-5831. |
ZHAO Y, YUAN X S, TANG R J, et al. Effect of biochar application on biological nitrogen fixation in double cropping paddy field in northern Hainan[J]. Environmental Science, 2022, 43(12): 5819-5831. (in Chinese with English abstract) | |
[29] | 刘佳欢, 王倩, 罗人杰, 等. 黄腐酸肥料对小麦根际土壤微生物多样性和酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1808-1816. |
LIU J H, WANG Q, LUO R J, et al. Effect of fulvic acid fertilizer on microbial diversity and enzyme activity in wheat rhizosphere soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1808-1816. (in Chinese with English abstract) | |
[30] | JIANG Y L, WANG X J, ZHAO Y M, et al. Effects of biochar application on enzyme activities in tea garden soil[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 728530. |
[31] | REN C J, WANG T, XU Y D, et al. Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes[J]. Forest Ecology and Management, 2018, 409: 170-178. |
[32] | CHEN L J, JIANG Y J, LIANG C, et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments[J]. Microbiome, 2019, 7(1): 77. |
[33] | BOUBEKRI K, SOUMARE A, MARDAD I, et al. The screening of potassium-and phosphate-solubilizing Actinobacteria and the assessment of their ability to promote wheat growth parameters[J]. Microorganisms, 2021, 9(3): 470. |
[34] | LIU L Y, TAN Z X, GONG H B, et al. Migration and transformation mechanisms of nutrient elements (N, P, K) within biochar in straw-biochar-soil-plant systems: a review[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 22-32. |
[35] | WU G, LING J, XU Y P, et al. Effects of soil warming and straw return on soil organic matter and greenhouse gas fluxes in winter wheat seasons in the North China Plain[J]. Journal of Cleaner Production, 2022, 356: 131810. |
[36] | 唐海明, 肖小平, 李超, 等. 不同土壤耕作模式对双季水稻生理特性与产量的影响[J]. 作物学报, 2019, 45(5): 740-754. |
TANG H M, XIAO X P, LI C, et al. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice[J]. Acta Agronomica Sinica, 2019, 45(5): 740-754. (in Chinese with English abstract) | |
[37] | ZHANG Q Q, SONG Y F, WU Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production, 2020, 242: 118435. |
[1] | ZHU Zheyi, SHI Fang, NING Ke, ZHENG Shan. Effect of policy incentives on farmer's adoption behavior of conservation tillage technologies: based on the perspectives of factor quality and time preference [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1172-1181. |
[2] | WU Jialong, CHI Ming, GAO Yan, WANG Xiang, SHEN Haiou. Effects of biochar application on soil physiochemical indicators at sloping farmland in black soil region [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2060-2069. |
[3] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
[4] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
[5] | MA Ling, ZHANG Zhenwu, FANG Yingzi, WU Huixin, XING Chenghua. Effects of nitrogen reduction and biochar application on growth and development of Citurs reticulata Blanco cv. ‘Ponkan’ and soil properties [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2739-2747. |
[6] | WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315. |
[7] | HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211. |
[8] | XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902. |
[9] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[10] | HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913. |
[11] | CUI Lingyu, YU Man, QIAO Yuying, SU Yao, WANG Yunlong, SHEN Alin. Research trend of soil quality assessment and microbiological indicators based on Web of Science database [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2688-2697. |
[12] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
[13] | YANG Shengling, HUANG Xingcheng, LI Yu, LIU Yanling, ZHANG Yarong, ZHANG Yan, ZHANG Wen’an, JIANG Taiming. Effects of long-term organic and inorganic fertilizer application on growth, dry matter accumulation and yield of rice [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1815-1825. |
[14] | QIU Lefeng, ZHANG Ling, XU Baogen, WU Shaohua, XU Mingxing. Effects of non-grain transition of agricultural planting structure on nitrogen and phosphorus loss from cultivated land [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1995-2003. |
[15] | SUN Wenyan, LIU Xiaogang, ZHANG Wenhui, LI Huiyong, WU Lang, YANG Qiliang, XIONG Guomei. Optimization of drip fertigation scheme for Coffea arabica based on soil quality index [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 566-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||