Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 893-902.DOI: 10.3969/j.issn.1004-1524.2023.04.16
• Environmental Science • Previous Articles Next Articles
XU Yanga(), REN Yilina,*(
), WANG Haojiea, HUANG Qiuhanga, XING Boyuana, CAO Hongliangb
Received:
2022-10-24
Online:
2023-04-25
Published:
2023-05-05
CLC Number:
XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.16
样品 Sample | 炭得率 Biochar yield | 全水分 Moisture content | 灰分 Ash content | 挥发分 Volatile content | 固定碳 Fixed carbon |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 38.80 | 3.27 | 20.70 | 12.08 | 63.95 |
10PRS-BC550-HT80 | 37.70 | 3.13 | 22.35 | 10.52 | 64.00 |
15PRS-BC550-HT80 | 37.65 | 2.76 | 23.46 | 10.08 | 63.70 |
10PRS-BC450-HT80 | 39.00 | 5.01 | 17.57 | 17.23 | 60.19 |
10PRS-BC550-HT80 | 37.70 | 3.16 | 22.11 | 14.52 | 60.21 |
10PRS-BC650-HT80 | 36.25 | 2.79 | 24.26 | 12.63 | 60.32 |
10PRS-BC550-HT40 | 38.05 | 3.81 | 18.06 | 17.47 | 60.65 |
10PRS-BC550-HT80 | 37.70 | 3.08 | 19.11 | 10.52 | 67.29 |
10PRS-BC550-HT120 | 37.75 | 2.43 | 19.19 | 10.46 | 67.92 |
Table 1 Biochar yield and basic physical properties of PRS-BC-HT under different preparation conditions %
样品 Sample | 炭得率 Biochar yield | 全水分 Moisture content | 灰分 Ash content | 挥发分 Volatile content | 固定碳 Fixed carbon |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 38.80 | 3.27 | 20.70 | 12.08 | 63.95 |
10PRS-BC550-HT80 | 37.70 | 3.13 | 22.35 | 10.52 | 64.00 |
15PRS-BC550-HT80 | 37.65 | 2.76 | 23.46 | 10.08 | 63.70 |
10PRS-BC450-HT80 | 39.00 | 5.01 | 17.57 | 17.23 | 60.19 |
10PRS-BC550-HT80 | 37.70 | 3.16 | 22.11 | 14.52 | 60.21 |
10PRS-BC650-HT80 | 36.25 | 2.79 | 24.26 | 12.63 | 60.32 |
10PRS-BC550-HT40 | 38.05 | 3.81 | 18.06 | 17.47 | 60.65 |
10PRS-BC550-HT80 | 37.70 | 3.08 | 19.11 | 10.52 | 67.29 |
10PRS-BC550-HT120 | 37.75 | 2.43 | 19.19 | 10.46 | 67.92 |
样品Sample | H/C | O/C | (O+N)/C |
---|---|---|---|
5PRS-BC550-HT80 | 0.036 | 0.017 | 0.023 |
10PRS-BC550-HT80 | 0.027 | 0.020 | 0.026 |
15PRS-BC550-HT80 | 0.019 | 0.028 | 0.032 |
10PRS-BC450-HT80 | 0.032 | 0.051 | 0.052 |
10PRS-BC550-HT80 | 0.027 | 0.041 | 0.046 |
10PRS-BC650-HT80 | 0.023 | 0.015 | 0.021 |
10PRS-BC550-HT40 | 0.031 | 0.043 | 0.047 |
10PRS-BC550-HT80 | 0.030 | 0.025 | 0.028 |
10PRS-BC550-HT120 | 0.027 | 0.012 | 0.014 |
Table 2 Atomic ratio of PRS-BC-HT under different preparation conditions
样品Sample | H/C | O/C | (O+N)/C |
---|---|---|---|
5PRS-BC550-HT80 | 0.036 | 0.017 | 0.023 |
10PRS-BC550-HT80 | 0.027 | 0.020 | 0.026 |
15PRS-BC550-HT80 | 0.019 | 0.028 | 0.032 |
10PRS-BC450-HT80 | 0.032 | 0.051 | 0.052 |
10PRS-BC550-HT80 | 0.027 | 0.041 | 0.046 |
10PRS-BC650-HT80 | 0.023 | 0.015 | 0.021 |
10PRS-BC550-HT40 | 0.031 | 0.043 | 0.047 |
10PRS-BC550-HT80 | 0.030 | 0.025 | 0.028 |
10PRS-BC550-HT120 | 0.027 | 0.012 | 0.014 |
样品Smple | ε1 | ε2 | ε3 | ε4 | 关联度Degree of relevance |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 0.333 | 0.333 | 0.790 | 0.598 | 0.513 |
10PRS-BC550-HT80 | 0.524 | 0.344 | 0.723 | 0.464 | 0.514 |
15PRS-BC550-HT80 | 1.000 | 0.478 | 0.559 | 0.333 | 0.593 |
10PRS-BC450-HT80 | 0.405 | 1.000 | 0.333 | 1.000 | 0.685 |
10PRS-BC550-HT80 | 0.529 | 0.372 | 0.401 | 0.851 | 0.538 |
10PRS-BC650-HT80 | 0.700 | 0.351 | 0.879 | 0.475 | 0.601 |
10PRS-BC550-HT40 | 0.419 | 0.478 | 0.387 | 0.727 | 0.503 |
10PRS-BC550-HT80 | 0.446 | 0.589 | 0.597 | 0.577 | 0.552 |
10PRS-BC550-HT120 | 0.532 | 0.900 | 1.000 | 0.527 | 0.740 |
Table 3 Grey correlation of PRS-BC-HT under different preparation conditions
样品Smple | ε1 | ε2 | ε3 | ε4 | 关联度Degree of relevance |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 0.333 | 0.333 | 0.790 | 0.598 | 0.513 |
10PRS-BC550-HT80 | 0.524 | 0.344 | 0.723 | 0.464 | 0.514 |
15PRS-BC550-HT80 | 1.000 | 0.478 | 0.559 | 0.333 | 0.593 |
10PRS-BC450-HT80 | 0.405 | 1.000 | 0.333 | 1.000 | 0.685 |
10PRS-BC550-HT80 | 0.529 | 0.372 | 0.401 | 0.851 | 0.538 |
10PRS-BC650-HT80 | 0.700 | 0.351 | 0.879 | 0.475 | 0.601 |
10PRS-BC550-HT40 | 0.419 | 0.478 | 0.387 | 0.727 | 0.503 |
10PRS-BC550-HT80 | 0.446 | 0.589 | 0.597 | 0.577 | 0.552 |
10PRS-BC550-HT120 | 0.532 | 0.900 | 1.000 | 0.527 | 0.740 |
[1] | 钟晓晓. 油菜秸秆生物炭的制备及农药负载-缓释应用研究[D]. 武汉: 华中农业大学, 2017. |
ZHONG X X. Application of biochar prepared from rape straw for pesticide loading-release[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[2] |
ANTAL M J, GRØNLI M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.
DOI URL |
[3] |
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333.
DOI |
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese with English abstract) | |
[4] | 李艳梅, 张兴昌, 廖上强, 等. 生物炭基肥增效技术与制备工艺研究进展分析[J]. 农业机械学报, 2017, 48(10): 1-14. |
LI Y M, ZHANG X C, LIAO S Q, et al. Research progress on synergy technologies of carbon-based fertilizer and its application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 1-14. (in Chinese with English abstract) | |
[5] |
AL-WABEL M I, HUSSAIN Q, USMAN A R A, et al. Impact of biochar properties on soil conditions and agricultural sustainability: a review[J]. Land Degradation & Development, 2018, 29(7): 2124-2161.
DOI URL |
[6] | 邢莉彬, 成洁, 耿增超, 等. 不同原料生物炭的理化特性及其作炭基肥缓释载体的潜力评价[J]. 环境科学, 2022, 43(5): 2770-2778. |
XING L B, CHENG J, GENG Z C, et al. Physicochemical properties of biochars prepared from different feedstocks and evaluation of its potential as a slow-release carriers for biochar-based fertilizers[J]. Environmental Science, 2022, 43(5): 2770-2778. (in Chinese with English abstract) | |
[7] | 钟磊, 栗高源, 陈冠益, 等. 我国农作物秸秆分布特征与秸秆炭基肥制备应用研究进展[J]. 农业资源与环境学报, 2022, 39(3): 575-585. |
ZHONG L, LI G Y, CHEN G Y, et al. Research progress on the distribution characteristics of crop straws and the preparation and application of straw carbon-based fertilizers in China[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 575-585. (in Chinese with English abstract) | |
[8] |
HUANG F, GAO L Y, WU R R, et al. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar[J]. Science of the Total Environment, 2020, 731: 139163.
DOI URL |
[9] |
MAHDI Z, EL HANANDEH A, YU Q J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103379.
DOI URL |
[10] | 董良杰, 李金铭, 赵博骏, 等. 硝酸改性秸秆水热炭结构表征与铅吸附机制研究[J]. 农业机械学报, 2021, 52(5): 267-278. |
DONG L J, LI J M, ZHAO B J, et al. Structure characterization and Pb2+ adsorption mechanism of nitric acid modified hydrochars from straw[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 267-278. (in Chinese with English abstract) | |
[11] | 王震宇, 刘国成, XING M, 等. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 2014, 35(12): 4735-4744. |
WANG Z Y, LIU G C, XING M, et al. Adsorption of Cd(Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environmental Science, 2014, 35(12): 4735-4744. (in Chinese with English abstract) | |
[12] |
KWAK J H, ISLAM M S, WANG S Y, et al. adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation[J]. Chemosphere, 2019, 231: 393-404.
DOI URL |
[13] |
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
DOI URL |
[14] | 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765. |
JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. (in Chinese with English abstract) | |
[15] | 吴晓东, 邢泽炳, 谷晓霞, 等. 炭化温度对柠条生物炭结构和性能的影响[J]. 太阳能学报, 2021, 42(12): 297-303. |
WU X D, XING Z B, GU X X, et al. Impact of carbonization temperature on structure and properties of Caragana korshinskii Kom biochar[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 297-303. (in Chinese with English abstract) | |
[16] |
OGUNGBENRO A E, QUANG D V, AL-ALI K, et al. Activated carbon from date seeds for CO2 capture applications[J]. Energy Procedia, 2017, 114: 2313-2321.
DOI URL |
[17] | 牛文娟, 阮桢, 钟菲, 等. 保温时间与粒度对稻秆和棉秆热解产物组成及能量转化影响[J]. 农业工程学报, 2018, 34(22): 212-219. |
NIU W J, RUAN Z, ZHONG F, et al. Effects of holding time and particle size on physicochemical properties and energy conversion of pyrolysis product conponent of rice straw and cotton stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 212-219. (in Chinese with English abstract) | |
[18] | 刘朝霞, 刘鸣, 牛文娟, 等. 保温时间对不同秸秆生物炭肥料化利用理化特性的影响[J]. 华中农业大学学报, 2020, 39(4): 182-192. |
LIU Z X, LIU M, NIU W J, et al. Effects of holding time on physical and chemical properties of utilizing different straw biochar fertilizer[J]. Journal of Huazhong Agricultural University, 2020, 39(4): 182-192. (in Chinese with English abstract) | |
[19] | 刘新, 冷言冰, 谷仕艳, 等. 油菜秸杆外壳对水溶液中六价铬的吸附作用[J]. 中国环境科学, 2015, 35(6): 1740-1748. |
LIU X, LENG Y B, GU S Y, et al. Adsorption of Cr(Ⅵ) in the aqueous solution by rape straw shell powder[J]. China Environmental Science, 2015, 35(6): 1740-1748. (in Chinese with English abstract) | |
[20] | 白敬, 徐友, 魏新华, 等. 基于光谱特性分析的冬油菜苗期田间杂草识别[J]. 农业工程学报, 2013, 29(20): 128-134. |
BAI J, XU Y, WEI X H, et al. Weed identification from winter rape at seedling stage based on spectrum characteristics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20): 128-134. (in Chinese with English abstract) | |
[21] | 毕于运. 秸秆资源评价与利用研究[D]. 北京: 中国农业科学院, 2010. |
BI Y Y. Study on straw resources evaluation and utilization in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract) | |
[22] |
LI Y F, HONG C, WANG Z Q, et al. Fractal characteristics of biochars derived from Penicillin v potassium residue pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104636.
DOI URL |
[23] |
HUANG H L, RIZWAN M, LI M, et al. Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.)[J]. Environmental Pollution, 2019, 255: 113146.
DOI URL |
[24] | 李萍, 胡传鹏, 杨卫正, 等. 带横向外凸筋多楔轮旋压成形规律及工艺研究[J]. 哈尔滨工业大学学报, 2018, 50(11): 153-159. |
LI P, HU C P, YANG W Z, et al. Study on spinning forming process of multi-wedge belt pulley with transverse outer ribs[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 153-159. (in Chinese with English abstract) | |
[25] | 辛善志. 基于组分的生物质热分解及交互作用机制研究[D]. 武汉: 华中科技大学, 2014. |
XIN S Z. Study on the mechanism of biomass pyrolysis and the interactions based on its components[D]. Wuhan: Huazhong University of Science and Technology, 2014. (in Chinese with English abstract) | |
[26] | 丁思惠, 方升佐, 田野, 等. 不同热解温度下杨树各组分生物质炭的理化特性分析与评价[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 193-200. |
DING S H, FANG S Z, TIAN Y, et al. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2020, 44(6): 193-200. (in Chinese with English abstract) | |
[27] | 吕娟, 王明峰, 蒋恩臣, 等. 不同热解温度下稻壳炭的理化特性分析[J]. 可再生能源, 2017, 35(10): 1448-1453. |
LYU J, WANG M F, JIANG E C, et al. Analysis on the physicochemical properties of the rice husk carbon produced at different pyrolysis temperature[J]. Renewable Energy Resources, 2017, 35(10): 1448-1453. (in Chinese with English abstract) | |
[28] | 葛丽炜, 夏颖, 刘书悦, 等. 热解温度和时间对马弗炉制备生物炭的影响[J]. 沈阳农业大学学报, 2018, 49(1): 95-100. |
GE L W, XIA Y, LIU S Y, et al. Effect of pyrolysis temperature and time on biochar production in a muffle furnace[J]. Journal of Shenyang Agricultural University, 2018, 49(1): 95-100. (in Chinese with English abstract) | |
[29] | 杨芳. 秸秆炭热化工特性分析及FT-MIR模型构建[D]. 武汉: 华中农业大学, 2017. |
YANG F. The thermal chemistry analysis and FT-MIR model building of straw biochar[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[30] |
LI J, ZHAO P T, LI T, et al. Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104771.
DOI URL |
[31] | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院广州地球化学研究所, 2017. |
WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. (in Chinese with English abstract) | |
[32] | 冯一尘. 基于生物炭性质分析和机器学习模型的重金属吸附效率预测[D]. 西安: 西北大学, 2020. |
FENG Y C. Prediction of heavy metal adsorption efficiency based on biochar properties analysis and machine learning model[D]. Xi’an: Northwest University, 2020. (in Chinese with English abstract) | |
[33] |
XIA Y, YANG T X, ZHU N M, et al. Enhanced adsorption of Pb(Ⅱ) onto modified hydrochar: modeling and mechanism analysis[J]. Bioresource Technology, 2019, 288: 121593.
DOI URL |
[34] | 李飞跃, 汪建飞, 谢越, 等. 热解温度对生物质炭碳保留量及稳定性的影响[J]. 农业工程学报, 2015, 31(4): 266-271. |
LI F Y, WANG J F, XIE Y, et al. Effects of pyrolysis temperature on carbon retention and stability of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 266-271. (in Chinese with English abstract) | |
[35] |
SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7): 516.
DOI URL |
[36] |
ASAI H, SAMSON B K, STEPHAN H M, et al. Biochar amendment techniques for upland rice production in Northern Laos[J]. Field Crops Research, 2009, 111(1/2): 81-84.
DOI URL |
[37] |
HONG P, LIU X, ZHANG X, et al. Hierarchically porous carbon derived from the activation of waste chestnut shells by potassium bicarbonate (KHCO3) for high-performance supercapacitor electrode[J]. International Journal of Energy Research, 2020, 44(2): 988-999.
DOI URL |
[38] |
PRAHAS D, KARTIKA Y, INDRASWATI N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 32-42.
DOI URL |
[39] |
CHEN B L, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16): 6138-6146.
DOI URL |
[40] | ACCARDIDEY A M. Black carbon in marine sediments: quantification and implications for the sorption of polycyclic aromatic hydrocarbons[D]. Cambridge, MA, US: The Massachusetts Institute of Technology, 2003. |
[41] |
ZENG H T, ZENG H H, ZHANG H, et al. Efficient adsorption of Cr (Ⅵ) from aqueous environments by phosphoric acid activated eucalyptus biochar[J]. Journal of Cleaner Production, 2021, 286: 124964.
DOI URL |
[42] | 王明峰, 陈志文, 蒋恩臣, 等. 桉树热解产物热物性参数演变特性研究[J]. 农业机械学报, 2018, 49(3): 317-321. |
WANG M F, CHEN Z W, JIANG E C, et al. Thermal parameters properties evolution of eucalyptus pyrolysis bio-char[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 317-321. (in Chinese with English abstract) | |
[43] |
WANG K F, PENG N, LU G N, et al. Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar[J]. Waste and Biomass Valorization, 2020, 11(2): 613-624.
DOI |
[44] | JIA Y M, HU Z Y, MU J, et al. Preparation of biochar as a coating material for biochar-coated urea[J]. Science of the Total Environment, 2020, 731: 139063. |
[45] | BALIGAR V C, FAGERIA N K. Nutrient use efficiency in plants: an overview[M]// Nutrient use efficiency:from basics to advances. New Delhi: Springer India, 2015: 1-14. |
[46] | 汤嘉雯, 陈金焕, 王凯男, 等. 加拿大一枝黄花生物炭对Cd2+的吸附特性及机理[J]. 农业环境科学学报, 2019, 38(6): 1339-1348. |
TANG J W, CHEN J H, WANG K N, et al. Characteristics and mechanism of cadmium adsorption by Solidago canadensis-derived biochar[J]. Journal of Agro-Environment Science, 2019, 38(6): 1339-1348. (in Chinese with English abstract) |
[1] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[2] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
[3] | SONG Biqing, YANG Xiaodong, ZHENG Yunye, WANG Guoping, XU Shengchun, ZHAO Yan, ZHAO Shanshan, MA Yuxuan, LI Sujuan. Evaluation of physicochemical properties, fatty acids and volatile components of different tobacco seed oils [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1152-1161. |
[4] | LI Wenlue, LUO Xiahong, LIU Tingting, JIN Guanrong, GE Yaying, CHEN Changli, AN Xia. Determination and comparative analysis of physicochemical properties of different sunflower seeds [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 671-677. |
[5] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
[6] | LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699. |
[7] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[8] | XU Minmin, HUANG Ying, LI Bo, XU Yan, ZHANG Shuai, YAO Lingyun, WANG Zheng. Effect of biochar on wheat root-associated microbial community structures [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516-525. |
[9] | JIANG Tao, WANG Liguo, SUN Fangfang, CHENG Jianbo, HE Tengbing, QIN Song, FAN Chengwu, YIN Wenfang. Effects of solid-digestate biochar application on soil nitrogen leaching and cabbage yield with liquid-digestate irrigation in karst-mountainous region of southwest China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2104-2115. |
[10] | ZHOU Wenzhi, SUN Xiangyang, LI Suyan, ZHANG Le. Ameliorative effect of bioorganic material on coastal saline soil [J]. , 2019, 31(4): 607-615. |
[11] | HUANG Huiqun, CAI Wenchang, ZHANG Jianyu, LI Can, ZENG Heping. Effects of carbonization temperatures on structure and properties of cow dung biochars [J]. , 2018, 30(9): 1561-1568. |
[12] | SUO Guifang, LYU Haohao, WANG Yuying, LIU Yuxue, HE Lili, YANG Shengmao. Preparation technology and properties analysis of biochar-based microbial fertilizers [J]. , 2018, 30(7): 1218-1228. |
[13] | WANG Daiyi, ZHANG Fengsong, PAN Juan, LIU Denglu, GOU Tizhong. Effect of rice straw derived biochar addition on adsorption and degradation of androstenedione [J]. , 2018, 30(4): 632-639. |
[14] | YANG Ying, TANG Weimin, LU Shengmin. Effects of processing conditions on physicochemical properties of bacterial cellulose pellicle [J]. , 2018, 30(4): 661-665. |
[15] | CHEN Chongjun, LIU Yuxue, FENG Yu, WANG Jianfang. Effects of bamboo charcoal addition on nitrogen and phosphorus loss and microbial community structures in greenhouse vegetable soil [J]. , 2018, 30(1): 123-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||