Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (4): 678-687.DOI: 10.3969/j.issn.1004-1524.2021.04.13
• Environmental Science • Previous Articles Next Articles
WU Peicong1,2(), ZHANG Peng2,3, SHAN Ying2, ZOU Ganghua2, DING Zheli4, ZHU Zhiqiang1,*(
), ZHAO Fengliang2,*(
)
Received:
2020-12-23
Online:
2021-04-25
Published:
2021-04-25
Contact:
ZHU Zhiqiang,ZHAO Fengliang
CLC Number:
WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.04.13
处理 Treatment | 有机碳 SOC/ (g·kg-1) | 全氮 Total N/ (g·kg-1) | 全磷 Total P/ (g·kg-1) | 全钾 Total K/ (g·kg-1) | 速效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 阳离子交换量 CEC/ (cmol·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
ON | 6.44 | 0.64 | 0.75 | 12.25 | 83.0 | 142.0 | 4.37 | 6.46 |
CT | 7.31 | 0.77 | 0.82 | 12.06 | 94.6 | 136.2 | 3.36 | 5.41 |
CST | 8.35 | 0.91 | 0.78 | 11.65 | 77.9 | 121.4 | 4.73 | 5.85 |
CBI | 15.89 | 0.87 | 0.71 | 11.12 | 91.1 | 151.2 | 3.89 | 5.81 |
Table 1 Basic physical and chemical properties of soil
处理 Treatment | 有机碳 SOC/ (g·kg-1) | 全氮 Total N/ (g·kg-1) | 全磷 Total P/ (g·kg-1) | 全钾 Total K/ (g·kg-1) | 速效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 阳离子交换量 CEC/ (cmol·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
ON | 6.44 | 0.64 | 0.75 | 12.25 | 83.0 | 142.0 | 4.37 | 6.46 |
CT | 7.31 | 0.77 | 0.82 | 12.06 | 94.6 | 136.2 | 3.36 | 5.41 |
CST | 8.35 | 0.91 | 0.78 | 11.65 | 77.9 | 121.4 | 4.73 | 5.85 |
CBI | 15.89 | 0.87 | 0.71 | 11.12 | 91.1 | 151.2 | 3.89 | 5.81 |
Fig.2 Ammonia volatilization flux at different fertilization stages The arrows show the time when basal fertilizer, tiller fertilizer and panicle fertilizer was applied, respectively.The same as below.
处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage | 全生长期 Whole growth period |
---|---|---|---|---|
BI | 18.20±0.36 Ac | 2.22±0.13 Be | 0.58±0.03 Cc | 21.00±0.52 e |
ST | 18.18±0.32 Ac | 2.37±0.16 Bde | 0.89±0.03 Ca | 21.44±0.51 d |
CBI | 20.36±0.28 Ab | 2.84±0.22 Bc | 0.69±0.09 Cbc | 23.89±0.59 c |
CST | 22.33±0.3 Aa | 3.22±0.18 Bb | 0.60±0.16 Cc | 26.15±0.65 a |
CT | 20.43±0.54 Ab | 3.66±0.31 Ba | 0.80±0.09 Cab | 24.90±0.94 b |
ON | 20.36±0.29 Ab | 2.43±0.27 Bd | 0.77±0.11 Cab | 21.01±0.67 e |
Table 2 Dynamic change of accumulated ammonia volatilization under different treatments kg·hm-2·d-1
处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage | 全生长期 Whole growth period |
---|---|---|---|---|
BI | 18.20±0.36 Ac | 2.22±0.13 Be | 0.58±0.03 Cc | 21.00±0.52 e |
ST | 18.18±0.32 Ac | 2.37±0.16 Bde | 0.89±0.03 Ca | 21.44±0.51 d |
CBI | 20.36±0.28 Ab | 2.84±0.22 Bc | 0.69±0.09 Cbc | 23.89±0.59 c |
CST | 22.33±0.3 Aa | 3.22±0.18 Bb | 0.60±0.16 Cc | 26.15±0.65 a |
CT | 20.43±0.54 Ab | 3.66±0.31 Ba | 0.80±0.09 Cab | 24.90±0.94 b |
ON | 20.36±0.29 Ab | 2.43±0.27 Bd | 0.77±0.11 Cab | 21.01±0.67 e |
处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage |
---|---|---|---|
BI | 6.72±0.08 b | 7.38±0.04 b | 7.23±0.07 a |
ST | 7.18±0.11 a | 7.59±0.06 a | 7.38±0.05 a |
CBI | 6.74±0.06 b | 6.92±0.06 c | 7.48±0.03 a |
CST | 7.08±0.08 a | 7.51±0.05 ab | 7.44±0.04 a |
CT | 6.62±0.09 bc | 6.88±0.08 c | 7.08±0.05 b |
ON | 6.49±0.07 c | 7.01±0.04 c | 7.49±0.02 a |
Table 3 pH of surface water
处理 Treatment | 基肥期 Basal fertilizer stage | 分蘖肥期 Tiller fertilizer stage | 穗肥期 Panicle fertilizer stage |
---|---|---|---|
BI | 6.72±0.08 b | 7.38±0.04 b | 7.23±0.07 a |
ST | 7.18±0.11 a | 7.59±0.06 a | 7.38±0.05 a |
CBI | 6.74±0.06 b | 6.92±0.06 c | 7.48±0.03 a |
CST | 7.08±0.08 a | 7.51±0.05 ab | 7.44±0.04 a |
CT | 6.62±0.09 bc | 6.88±0.08 c | 7.08±0.05 b |
ON | 6.49±0.07 c | 7.01±0.04 c | 7.49±0.02 a |
Fig.5 Changes of NH4+-N content in soil treated with different treatments Different lowercase letters indicated significant differences between different treatments in the same period. The same as below.
指标 Index | 氨挥发排放通量 Ammonia volatilization flux | 田面水pH pH of surface water | 田面水NH4+-N NH4+-N of surface water | 田面水NO3--N NO3--N of surface water | 土壤NH4+-N Soil NH4+-N |
---|---|---|---|---|---|
田面水pH | -0.135* | ||||
pH of surface water | |||||
田面水NH4+-N | 0.344** | -0.213** | |||
NH4+-N of surface water | |||||
田面水NO3--N | 0.324** | -0.307** | 0.328** | ||
NO3--N of surface water | |||||
土壤NH4+-N | 0.741** | -0.429* | 0.683** | 0.482** | |
Soil NH4+-N | |||||
土壤NO3--N | 0.541** | -0.501** | 0.556** | 0.452** | 0.802** |
Soil NO3--N |
Table 4 Correlation analysis between soil ammonia volatilization and physic-chemical indexes of soil and surface water
指标 Index | 氨挥发排放通量 Ammonia volatilization flux | 田面水pH pH of surface water | 田面水NH4+-N NH4+-N of surface water | 田面水NO3--N NO3--N of surface water | 土壤NH4+-N Soil NH4+-N |
---|---|---|---|---|---|
田面水pH | -0.135* | ||||
pH of surface water | |||||
田面水NH4+-N | 0.344** | -0.213** | |||
NH4+-N of surface water | |||||
田面水NO3--N | 0.324** | -0.307** | 0.328** | ||
NO3--N of surface water | |||||
土壤NH4+-N | 0.741** | -0.429* | 0.683** | 0.482** | |
Soil NH4+-N | |||||
土壤NO3--N | 0.541** | -0.501** | 0.556** | 0.452** | 0.802** |
Soil NO3--N |
[1] | ZHU Z L, CHEN D L. Nitrogen fertilizer use in China: contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002,63(2/3):117-127. |
[2] | 王桂良. 中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析[D]. 北京: 中国农业大学, 2014. |
WANG G L. Quantitative analysis of reactive nitrogen losses and nitrogen use efficiency of three major grain crops in china[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract) | |
[3] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000,9(1):1-6. |
ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Scieces, 2000,9(1):1-6.(in Chinese) | |
[4] | BEUSEN A H W, BOUWMAN A F, HEUBERGER P S C, et al. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems[J]. Atmospheric Environment, 2008,42(24):6067-6077. |
[5] | SYLVAIN P HAYO M G V D W, FRANCOISE V. Evaluation of an operational method for the estimation of emissions of nitrogen compounds for a group of farms[J]. International Journal of Agricultural Resources Governance & Ecology, 2006(5):541-549. |
[6] | FAO. FAO statistical pocketbook 2012: world food and agriculture[J]. FAO Statistical Pocketbook World Food & Agriculture, 2012,79(7102):572-574. |
[7] | 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 北京: 中国农业科学院, 2019. |
BAI Z G. Effects of N management strategy on N metabolism in rice plant and N use efficiency in paddy soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
[8] | 钟婷. 秸秆炭化还田对稻田土壤氨挥发的影响及其机理研究[D]. 杭州: 浙江大学, 2017. |
ZHONG T. Influence of biochar application on NH3 volatilization from paddy soil[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
[9] | WANG J, WANG D J, ZHANG G, et al. Effect of wheat straw application on ammonia volatilization from urea applied to a paddy field[J]. Nutrient Cycling in Agroecosystems, 2012,94(1):73-84. |
[10] | SUN L S, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China-ScienceDirect[J]. Atmospheric Environment, 2018,181:97-105. |
[11] | 汪军, 王德建, 张刚, 等. 麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J]. 环境科学, 2013,34(1):27-33. |
WANG J, WANG D J, ZHANG G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Chinese Journal of Environmental Science, 2013,34(1):27-33. (in Chinese with English abstract) | |
[12] | 车庆博. 施用有机物料对尿素氨挥发影响的研究[D]. 长春: 吉林农业大学, 2008. |
CHE Q B. Study on the effects of organic material on urea ammonia volatilization[D]. Changchun: Jilin Agricultural University, 2008. (in Chinese with English abstract) | |
[13] |
TIAN G, CAI Z, CAO J, et al. Factors affecting ammonia volatilization from a rice-wheat rotation system[J]. Chemosphere, 2001,42(2):123-129.
DOI URL PMID |
[14] | HE T H, LIU D Y, YUAN J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture, Ecosystems & Environment, 2018,264:44-53. |
[15] |
FENG Y F, SUN H J, XUE L H, et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil[J]. Chemosphere, 2017,168:1277-1284.
URL PMID |
[16] |
SUN H J, MIN J, ZHANG H L, et al. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater[J]. Environmental Technology, 2018,39(16):2090-2096.
URL PMID |
[17] |
SUN H J, LU H Y, CHU L, et al. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil[J]. The Science of the Total Environment, 2017,575:820-825.
URL PMID |
[18] | WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the total environment, 2017(593/594):347-356. |
[19] |
MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016,142:120-127.
DOI URL PMID |
[20] | PALANIVELL P, AHMED O H, AB MAJID N M. Minimizing ammonia volatilization from urea in waterlogged condition using chicken litter biochar[J]. Communications in Soil Science and Plant Analysis, 2017,48(17):2083-2092. |
[21] | THANGARAJAN R, BOLAN N S, KUNHIKRISHNAN A, et al. The potential value of biochar in the mitigation of gaseous emission of nitrogen[J]. Science of The Total Environment, 2018,612:257-268. |
[22] | HE Y, LEHNDORFF E, AMELUNG W, et al. Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation[J]. Agriculture Ecosystems & Environment, 2017,249:91-100. |
[23] | 董玉兵, 吴震, 李博, 等. 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响[J]. 植物营养与肥料学报, 2017,23(5):1258-1267. |
DONG Y B, WU Z, LI B, et al. Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system[J]. Plant Nutrition and Fertilizer Science, 2017,23(5):1258-1267.(in Chinese with English abstract) | |
[24] | 魏玉云. 热带地区砖红壤上不同土壤pH和含水量对尿素氨挥发的影响研究[D]. 海口: 海南大学, 2006. |
WEI Y Y. Study on the volatilization differences of ammonia from latosols with different soil pH and different soil water content[D]. Haikou: Hainan University, 2006. (in Chinese with English abstract) | |
[25] | 田玉华, 曾科, 尹斌. 基于不同监测方法的太湖地区稻田基蘖肥期氨排放研究[J]. 土壤学报, 2019,56(5):1180-1189. |
TIAN Y H, ZENG K, YIN B. Ammonia emission following basal and tillering fertilization in Taihu Lake region relative to monitoring techniques[J]. Acta Pedologica Sinica, 2019,56(5):1180-1189. (in Chinese with English abstract) | |
[26] |
SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. The Science of the Total Environment, 2019,660:512-518.
DOI URL PMID |
[27] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020,41(2):922-931. |
YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020,41(2):922-931. (in Chinese with English abstract) | |
[28] | CHEN A Q, LEI B K, HU W L, et al. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China[J]. Nutrient Cycling in Agroecosystems, 2015,101(1):139-152. |
[29] |
YAO Z S, ZHENG X H, ZHANG Y N, et al. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system[J]. Scientific Reports, 2017,7(1):11415.
URL PMID |
[30] | 吴凡, 张克强, 谢坤, 等. 洱海流域典型农区不同施肥处理下稻田氨挥发变化特征[J]. 农业环境科学学报, 2019,38(8):1735-1742. |
WU F, ZHANG K Q, XIE K, et al. Characteristics of ammonia volatilization from rice paddy fields under different fertilization treatments in typical agricultural areas of Erhai basin[J]. Journal of Agro-Environment Science, 2019,38(8):1735-1742. (in Chinese with English abstract) | |
[31] | 李然, 蔡威威, 艾天成, 等. 稻田氨挥发损失和水稻产量对不同水氮处理的响应[J]. 中国土壤与肥料, 2020(3):47-54. |
LI R, CAI W W, AI T C, et al. Responses of ammonia volatilization and grain yield under different water and fertilizer practices in a rice paddy[J]. Soils and Fertilizers Sciences in China, 2020(3):47-54.(in Chinese) | |
[32] |
YING J Y, ZHANG L M, HE J Z. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns.[J]. Environmental Microbiology Reports, 2010,2(2):304-312.
URL PMID |
[33] | 邬刚, 袁嫚嫚, 曹哲伟, 等. 不同水氮管理条件下稻田氨挥发损失特征[J]. 生态与农村环境学报, 2019,35(5):651-658. |
WU G, YUAN M M, CAO Z W, et al. Ammonia volatilization under different water management and nitrogen schemes in a paddy field[J]. Journal of Ecology and Rural Environment, 2019,35(5):651-658. (in Chinese with English abstract) | |
[34] | 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报, 2013,32(8):1682-1689. |
YU Y L, XUE L H, YANG L Z. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013,32(8):1682-1689.(in Chinese with English abstract) | |
[35] | 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019,25(12):2102-2112. |
HUANG S Y, TIAN C, XIE G X, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Plant Nutrition and Fertilizer Science, 2019,25(12):2102-2112. (in Chinese with English abstract) | |
[36] | 张水清, 张博, 岳克, 等. 生物质炭对华北平原4种典型土壤冬小麦生育前期氨挥发的影响[J]. 农业资源与环境学报, 2021(1):1-14. |
ZHANG S Q, ZHANG B, YUE K, et al. Effects of biochar on NH3 volatilization from four typical soils during early growth stage of winter wheat in the North China Plain[J]. Journal of Agricultural Resources and Environment, 2021(1):1-14.(in Chinese with English abstract) | |
[37] |
MANDAL S, DONNER E, VASILEIADIS S, et al. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil[J]. The Science of the Total Environment, 2018,627:942-950.
DOI URL PMID |
[1] | XU Minmin, HUANG Ying, LI Bo, XU Yan, ZHANG Shuai, YAO Lingyun, WANG Zheng. Effect of biochar on wheat root-associated microbial community structures [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516-525. |
[2] | SU Yao, JIA Shengqiang, HE Zhenchao, YANG Yanhua, YU Man, CHEN Xijing, SHEN Alin. Optimization of straw decomposition with inoculants by using response surface method [J]. , 2019, 31(5): 798-805. |
[3] | ZHOU Wenzhi, SUN Xiangyang, LI Suyan, ZHANG Le. Ameliorative effect of bioorganic material on coastal saline soil [J]. , 2019, 31(4): 607-615. |
[4] | HUANG Huiqun, CAI Wenchang, ZHANG Jianyu, LI Can, ZENG Heping. Effects of carbonization temperatures on structure and properties of cow dung biochars [J]. , 2018, 30(9): 1561-1568. |
[5] | SUO Guifang, LYU Haohao, WANG Yuying, LIU Yuxue, HE Lili, YANG Shengmao. Preparation technology and properties analysis of biochar-based microbial fertilizers [J]. , 2018, 30(7): 1218-1228. |
[6] | WANG Ang, MA Xuzhou, YU Yongqing, XU Jing, LYU Weiqun. Ammonia volatilization from rice-crab culture systems in northern China [J]. , 2018, 30(4): 622-631. |
[7] | WANG Daiyi, ZHANG Fengsong, PAN Juan, LIU Denglu, GOU Tizhong. Effect of rice straw derived biochar addition on adsorption and degradation of androstenedione [J]. , 2018, 30(4): 632-639. |
[8] | CHEN Chongjun, LIU Yuxue, FENG Yu, WANG Jianfang. Effects of bamboo charcoal addition on nitrogen and phosphorus loss and microbial community structures in greenhouse vegetable soil [J]. , 2018, 30(1): 123-128. |
[9] | XIANG Tianyong, QIAN Guang, ZHU Jie, SHAN Shengdao, LAN Jianming. Multiple deposition reaction of rice straw by hydrothermal carbonization [J]. , 2018, 30(1): 137-143. |
[10] | CHEN Hongwei, HUANG Ling, FENG Lu, LI Xiaoqing, MENG Yutian, DAI Lin. Effects of biochar based fertilizer on seasonal variation of greenhouse gas emissions [J]. , 2017, 29(6): 977-981. |
[11] | NIE Dong1, JIN Mingji2,*, LIU Yong3, YAN Changguo2. Research on optimization and kinetics in anaerobic fermentation of mixed cattle manure and rice straw [J]. , 2016, 28(8): 1421-. |
[12] | LIN Xiaoqing1,2, LYU Haohao2,3, LIU Yuxue2,3, WANG Yuying2,3, YANG Shengmao1,2,3,*. Effects of biomass and carbonization temperature on biochar yield and characteristics [J]. , 2016, 28(7): 1216-. |
[13] | YOU Fangfang1, ZHAO Mingqin1,*, CHEN Fayuan1, SUN Cuihong1, XU Yueqi1, LI Hui2, JIN Hongshi3, JIN Jianghua3. Effect of combined application of biochar and fertilizer on growth of tobacco under Cd stress [J]. , 2016, 28(3): 489-. |
[14] | DAI Lin, NIE Ying, FENG Lu, XU Mao-mao, DING Yi-jun, XU Hong-tao, WANG Hong-yan. Effect of biochar on carbon and nitrogen content of albic soil [J]. , 2016, 28(10): 1745-1754. |
[15] | LI Jing\|jing, DING Song\|shuang, LI Yan\|ping, YUN Fei, YAN Hai\|tao, WANG Zhi\|meng, LIU Guo\|shun*. Effects of biochar and nitrogen fertilizers on dry matter accumulation of flue\|cured tobacco and soil biological characteristics [J]. , 2016, 28(1): 96-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||