Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 613-621.DOI: 10.3969/j.issn.1004-1524.20230659
• Environmental Science • Previous Articles Next Articles
YU Chao1(), WANG Yinyu2, LIU Qizhen2, WANG Yun3, SHEN Hong3, FENG Ying2,*(
)
Received:
2023-05-18
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230659
材料 Material | pH | EC/ (μC·cm-1) | CEC/ (cmol·kg-1) | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | DTPA-Cd/ (mg·kg-1) | TCd/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
土壤Soil | 5.70 | 1 199 | 9.25 | 27.50 | 261.10 | 99.79 | 155.00 | 0.40 | 0.88 |
石灰Lime | 12.18 | 7 800 | — | — | — | — | 145.00 | — | 0.07 |
沸石Zeolite | 9.81 | 165 | 10.55 | — | — | — | 735.00 | — | 0.02 |
Table 1 Basic physiochemical properties and cadmium content of soil, lime and zeolite
材料 Material | pH | EC/ (μC·cm-1) | CEC/ (cmol·kg-1) | OM/ (g·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) | DTPA-Cd/ (mg·kg-1) | TCd/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
土壤Soil | 5.70 | 1 199 | 9.25 | 27.50 | 261.10 | 99.79 | 155.00 | 0.40 | 0.88 |
石灰Lime | 12.18 | 7 800 | — | — | — | — | 145.00 | — | 0.07 |
沸石Zeolite | 9.81 | 165 | 10.55 | — | — | — | 735.00 | — | 0.02 |
原料 Raw material | pH | 碳含量 Carbon content/% | EC/ (dS· cm-1) | CEC/ (cmol· kg-1) | 碱解氮含量 Hydrolysable nitrogen content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (g·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 总Cd含量 Total Cd content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
稻壳Rice husk | 10.00± 0.11 | 32.9±1.2 | 1.05± 0.07 | 33.5 ± 3.5 | 4.90 ± 1.03 | 0.943±0.043 | 128.0±18.1 | 0.22±0.02 |
猪粪Pig manure | 9.71± 0.12 | 70.9±5.6 | 1.97 ± 0.03 | 40.8 ± 2.0 | 35.70± 5.70 | 0.963±0.013 | 267.0±16.6 | 0.14±0.03 |
污泥Sludge | 7.44± 0.09 | 26.9±3.4 | 8.02± 0.01 | 22.4 ± 1.4 | 217.00± 17.00 | 0.135± 0.001 | 23.6±1.3 | 0.25±0.08 |
玉米秸秆Corn straw | 8.72± 0.04 | 87.2±4.2 | 2.93± 0.13 | 34.9 ± 0.9 | 29.40±4.42 | 1.470±0.181 | 476.0±15.7 | 0.28±0.03 |
木屑Woodchips | 10.30± 0.11 | 90.4+3.8 | 1.38 ± 0.05 | 26.7 ± 3.8 | 9.10± 1.23 | 0.658 ±0.575 | 10.9±0.5 | 0.32±0.01 |
菖蒲Acorus calamus | 8.71± 0.14 | 55.9±0.5 | 1.50± 0.08 | 31.8 ± 2.6 | — | 2.070± 0.215 | 109.0±13.2 | 0.14±0.01 |
竹屑Bamboo shavings | 9.70± 0.12 | 81.8±2.6 | 9.22± 0.11 | 35.4 ± 1.9 | — | 1.630± 0.127 | 41.9±5.4 | 0.18±0.02 |
Table 2 Basic physical and chemical properties and heavy metal content of biochar from different raw materials
原料 Raw material | pH | 碳含量 Carbon content/% | EC/ (dS· cm-1) | CEC/ (cmol· kg-1) | 碱解氮含量 Hydrolysable nitrogen content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (g·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 总Cd含量 Total Cd content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
稻壳Rice husk | 10.00± 0.11 | 32.9±1.2 | 1.05± 0.07 | 33.5 ± 3.5 | 4.90 ± 1.03 | 0.943±0.043 | 128.0±18.1 | 0.22±0.02 |
猪粪Pig manure | 9.71± 0.12 | 70.9±5.6 | 1.97 ± 0.03 | 40.8 ± 2.0 | 35.70± 5.70 | 0.963±0.013 | 267.0±16.6 | 0.14±0.03 |
污泥Sludge | 7.44± 0.09 | 26.9±3.4 | 8.02± 0.01 | 22.4 ± 1.4 | 217.00± 17.00 | 0.135± 0.001 | 23.6±1.3 | 0.25±0.08 |
玉米秸秆Corn straw | 8.72± 0.04 | 87.2±4.2 | 2.93± 0.13 | 34.9 ± 0.9 | 29.40±4.42 | 1.470±0.181 | 476.0±15.7 | 0.28±0.03 |
木屑Woodchips | 10.30± 0.11 | 90.4+3.8 | 1.38 ± 0.05 | 26.7 ± 3.8 | 9.10± 1.23 | 0.658 ±0.575 | 10.9±0.5 | 0.32±0.01 |
菖蒲Acorus calamus | 8.71± 0.14 | 55.9±0.5 | 1.50± 0.08 | 31.8 ± 2.6 | — | 2.070± 0.215 | 109.0±13.2 | 0.14±0.01 |
竹屑Bamboo shavings | 9.70± 0.12 | 81.8±2.6 | 9.22± 0.11 | 35.4 ± 1.9 | — | 1.630± 0.127 | 41.9±5.4 | 0.18±0.02 |
Fig.2 Effects of different treatments on shoot dry weight and chlorophyll content of pakchoi Bars marked without the same letters indicate significant difference at P<0.05. The same as below. The shoot dry weight is recorded by pot.
处理 Treatments | pH | EC/ (μS· cm-1) | CEC/ (cmol· kg-1) | 有机质含量 Organic matter content/ (g·kg-1) | 碱解氮含量 Hydrolysable nitrogen content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | |
---|---|---|---|---|---|---|---|---|
CK | 5.79±0.14 f | 858.07±42.04 e | 8.87±0.32 c | 27.71±1.25 c | 144.03±5.39 f | 137.67±5.69 f | 135.90±3.52 f | |
SF | 6.96±0.08 e | 892.67±5.13 de | 9.95±0.12 b | 26.91±2.20 c | 152.60±3.29 e | 159.67±4.16 de | 144.67±5.39 e | |
ZF | 7.59±0.08 ab | 1 217.33±51.43 a | 10.58+0.63 a | 27.56±1.68 c | 177.33±2.14 b | 226.67±4.51 a | 184.69±1.75 a | |
DGK | 7.51±0.11 abc | 975.77±60.83 cd | 10.16±0.19 ab | 27.52±0.48 c | 170.27±2.05 c | 158.33±3.51 e | 150.48±5.11 de | |
YM | 7.29±0.06 d | 1 113.83±83.36 ab | 9.86±0.03 b | 29.10±0.40 abc | 164.50±3.03 d | 186.00±5.00 b | 151.30±4.91 de | |
ZZ | 7.43±0.09 bcd | 1 095.33±84.62 b | 10.11±0.20 ab | 31.02±0.66 a | 177.57±2.28 b | 168.67±5.51 cd | 171.58±6.74 b | |
MP | 7.46±0.08 abc | 1 052.00±62.27 bc | 10.09±0.09 ab | 28.18±0.84 bc | 170.57±4.22 c | 168.33±5.69 cd | 158.23±6.79 cd | |
CPC | 7.63±0.11 a | 1 166.67±72.86 ab | 10.06±0.14 b | 30.25±2.19 ab | 179.67±2.65 ab | 219.33±6.66 a | 163.57±2.98 bc | |
WN | 7.39±0.06 cd | 1 056.03±44.98 bc | 10.26±0.08 ab | 27.42±0.66 c | 183.43±2.37 a | 170.33±6.35 c | 146.03±2.20 e |
Table 3 Effects of different treatments on soil physical and chemical properties
处理 Treatments | pH | EC/ (μS· cm-1) | CEC/ (cmol· kg-1) | 有机质含量 Organic matter content/ (g·kg-1) | 碱解氮含量 Hydrolysable nitrogen content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | |
---|---|---|---|---|---|---|---|---|
CK | 5.79±0.14 f | 858.07±42.04 e | 8.87±0.32 c | 27.71±1.25 c | 144.03±5.39 f | 137.67±5.69 f | 135.90±3.52 f | |
SF | 6.96±0.08 e | 892.67±5.13 de | 9.95±0.12 b | 26.91±2.20 c | 152.60±3.29 e | 159.67±4.16 de | 144.67±5.39 e | |
ZF | 7.59±0.08 ab | 1 217.33±51.43 a | 10.58+0.63 a | 27.56±1.68 c | 177.33±2.14 b | 226.67±4.51 a | 184.69±1.75 a | |
DGK | 7.51±0.11 abc | 975.77±60.83 cd | 10.16±0.19 ab | 27.52±0.48 c | 170.27±2.05 c | 158.33±3.51 e | 150.48±5.11 de | |
YM | 7.29±0.06 d | 1 113.83±83.36 ab | 9.86±0.03 b | 29.10±0.40 abc | 164.50±3.03 d | 186.00±5.00 b | 151.30±4.91 de | |
ZZ | 7.43±0.09 bcd | 1 095.33±84.62 b | 10.11±0.20 ab | 31.02±0.66 a | 177.57±2.28 b | 168.67±5.51 cd | 171.58±6.74 b | |
MP | 7.46±0.08 abc | 1 052.00±62.27 bc | 10.09±0.09 ab | 28.18±0.84 bc | 170.57±4.22 c | 168.33±5.69 cd | 158.23±6.79 cd | |
CPC | 7.63±0.11 a | 1 166.67±72.86 ab | 10.06±0.14 b | 30.25±2.19 ab | 179.67±2.65 ab | 219.33±6.66 a | 163.57±2.98 bc | |
WN | 7.39±0.06 cd | 1 056.03±44.98 bc | 10.26±0.08 ab | 27.42±0.66 c | 183.43±2.37 a | 170.33±6.35 c | 146.03±2.20 e |
[3] | 茹淑华, 赵欧亚, 侯利敏, 等. 8种钝化剂产品对不同镉污染土壤理化性质和镉有效性的影响[J]. 生态环境学报, 2021, 30(10): 2085-2092. |
RU S H, ZHAO O Y, HOU L M, et al. Effects of eight kinds of passivators on properties and cadmium availability in different cadmium-contaminated soil[J]. Ecology and Environmental Sciences, 2021, 30(10): 2085-2092. (in Chinese with English abstract) | |
[4] | YANG Y J, CHEN J M, HUANG Q N, et al. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils?:a contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils[J]. Chemosphere, 2018, 193: 547-556. |
[5] | ULLAH A, TAHIR A, RASHID H U, et al. Strategies for reducing Cd concentration in paddy soil for rice safety[J]. Journal of Cleaner Production, 2021, 316: 128116. |
[6] | 杜彩艳, 孙秀梅, 鲁海燕, 等. 不同钝化剂对大白菜产量和吸收 Cu、As、Cd、Pb 的影响[J]. 西南农业学报, 2023, 36(2):257-263. |
DU C Y, SUN X M, LU H Y, et al. Effects of different amendments on yield and Cu, As, Cd, Pb uptake by Chinese cabbage[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(2):257-263. (in Chinese with English abstract) | |
[7] | 张贺. 改性沸石对镉污染土壤性质及辣椒生长的影响[D]. 泰安: 山东农业大学, 2022. |
ZHANG H. Effects of modified zeolite on properties of cadmium contaminated soil and pepper growth[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[8] | QIU Z, CHEN J H, TANG J W, et al. A study of cadmium remediation and mechanisms: improvements in the stability of walnut shell-derived biochar[J]. Science of the Total Environment, 2018, 636: 80-84. |
[9] | 王义祥, 赖永翔, 叶菁, 等. 生物炭对不同镉污染土壤钝化效果和小白菜镉吸收的影响[J]. 土壤通报, 2019, 50(3): 713-718. |
WANG Y X, LAI Y X, YE J, et al. Effects of biochar on passivation and uptake of cadmium by Brassica chinensis in cadmium-polluted soils[J]. Chinese Journal of Soil Science, 2019, 50(3): 713-718. (in Chinese with English abstract) | |
[10] | 孙莉霞, 郁红艳, 郑雷, 等. 改性生物炭在Cd(Ⅱ)污染修复中的研究进展[J]. 环境科学与技术, 2023, 46 (S2): 54-63. |
SUN L X, YU H Y, ZHENG L, et al. Research progress of modified biochar in Cd(II) pollution remediation[J]. Environmental Science & Technology, 2023, 46(S2): 54-63. (in Chinese with English abstract) | |
[11] | FANG W, YANG Y, WANG H L, et al. Rice rhizospheric effects on the bioavailability of toxic trace elements during land application of biochar[J]. Environmental Science & Technology, 2021, 55(11): 7344-7354. |
[12] | HAMID Y, TANG L, HUSSAIN B, et al. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil[J]. Environmental Pollution, 2020, 257: 113609. |
[13] | LIU Q Z, CHEN Z Q, HUANG L K, et al. The effects of a combined amendment on growth, cadmium adsorption by five fruit vegetables, and soil fertility in contaminated greenhouse under rotation system[J]. Chemosphere, 2021, 285: 131499. |
[14] | LIU Q Z, HUANG L K, CHEN Z Q, et al. Biochar and its combination with inorganic or organic amendment on growth, uptake and accumulation of cadmium on lettuce[J]. Journal of Cleaner Production, 2022, 370: 133610. |
[15] | 冯继红, 何季, 吴传美, 等. 复合钝化剂对原位镉污染土壤的钝化效果及白菜镉富集的影响[J/OL]. 热带作物学报. https://kns.cnki.net/kcms/detail/46.1019.s.20230315.1137.004.htm. |
FENG J H, HE J, WU C M, et al. Effect of composite passivator on in-situ cadmium contaminated soil and cadmium enrichment in cabbage[J]. Chinese Journal of Tropical Crops, https://kns.cnki.net/kcms/detail/46.1019.s.20230315.1137.004.htm. (in Chinese with English abstract) | |
[16] | ZHAO H H, HUANG X R, LIU F H, et al. Potential of a novel modified gangue amendment to reduce cadmium uptake in lettuce (Lactuca sativa L.)[J]. Journal of Hazardous Materials, 2021, 410: 124543. |
[17] | 马杰, 孙向阳, 索琳娜, 等. 两种改良剂对北方石灰性土壤中镉的钝化及小白菜生长的影响[J]. 华北农学报, 2022, 37(2): 152-159. |
MA J, SUN X Y, SUO L N, et al. Effects of two modifiers on passivation of cadmium in calcareous soil in Northern China and growth of pakchoi[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 152-159. (in Chinese with English abstract) | |
[1] | 冯英, 马璐瑶, 王琼, 等. 我国土壤-蔬菜作物系统重金属污染及其安全生产综合农艺调控技术[J]. 农业环境科学学报, 2018, 37(11): 2359-2370. |
FENG Y, MA L Y, WANG Q, et al. Heavy-metal pollution and safety production technologies of soil-vegetable crop systems in China[J]. Journal of Agro-Environment Science, 2018, 37(11): 2359-2370. (in Chinese with English abstract) | |
[18] | 王昆艳, 官会林, 卢俊, 等. 生物质炭施用量对旱地酸性红壤理化性质的影响[J]. 土壤, 2020, 52(3): 503-509. |
WANG K Y, GUAN H L, LU J, et al. Effects of biochar on physicochemical properties of dry land acid red soil[J]. Soils, 2020, 52(3): 503-509. (in Chinese with English abstract) | |
[2] | 闫雷, 刘鸣一, 武志民, 等. 钝化剂对镉污染温室黑土镉生物有效性及白菜生长的影响[J]. 东北农业大学学报, 2023, 54(1): 45-51. |
YAN L, LIU M Y, WU Z M, et al. Effects of passivators on cadmium bioavailability and Chinese cabbage growth in cadmium-contaminated black soil[J]. Journal of Northeast Agricultural University, 2023, 54(1): 45-51. (in Chinese with English abstract) | |
[19] | GARBOWSKI T, BAR-MICHALCZYK D, CHARAZIŃSKA S, et al. An overview of natural soil amendments in agriculture[J]. Soil and Tillage Research, 2023, 225: 105462. |
[20] | 陈德, 赵首萍, 叶雪珠, 等. 不同钝化剂对小米椒吸收和积累镉的影响[J]. 浙江农业学报, 2021, 33(10): 1921-1930. |
CHEN D, ZHAO S P, YE X Z, et al. Effects of soil amendments on Cd uptake and accumulation in red pepper[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1921-1930. (in Chinese with English abstract) | |
[21] | 张薇, 陈雪丽, 万书明, 等. 原料和制备条件对农用生物炭特性影响的研究进展[J]. 黑龙江农业科学, 2021(12): 107-113. |
ZHANG W, CHEN X L, WAN S M, et al. The influence of raw materials and preparation conditions on agricultural biochar characteristics[J]. Heilongjiang Agricultural Sciences, 2021(12): 107-113. (in Chinese with English abstract) | |
[22] | 孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析[J]. 农业资源与环境学报, 2017, 34(6): 543-549. |
SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 543-549. (in Chinese with English abstract) |
[1] | YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8. |
[2] | HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211. |
[3] | XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902. |
[4] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[5] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[6] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
[7] | WANG Jianbing, WANG Jintao, YAN Kexin, GUO Xiaolan, WANG Dun, DAI Hongwen. Cadmium and lead accumulation characteristics of watercress under cadmium-lead combined pollution [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2664-2672. |
[8] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
[9] | WANG Chen, ZHANG Min, WANG Zhenqi, QIAN Xiaoyong, XU Chang, NI Yuanzhi, LI Jinwen, SHEN Genxiang. Migration regularity and accumulation risk of heavy metals after continuous application of swine manure in paddy soils [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1985-1994. |
[10] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
[11] | LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699. |
[12] | SUN Liping, BAI Linlin, GAN Yating, CHEN Xueyun, WANG Liu, ZHANG Yiming, HE Kaiyu, XU Xiahong. Research progress of rapid detection of pesticides and veterinary drugs residues and heavy metal ions based on DNA G-quadruplex [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1770-1778. |
[13] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[14] | XU Minmin, HUANG Ying, LI Bo, XU Yan, ZHANG Shuai, YAO Lingyun, WANG Zheng. Effect of biochar on wheat root-associated microbial community structures [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516-525. |
[15] | JIANG Tao, WANG Liguo, SUN Fangfang, CHENG Jianbo, HE Tengbing, QIN Song, FAN Chengwu, YIN Wenfang. Effects of solid-digestate biochar application on soil nitrogen leaching and cabbage yield with liquid-digestate irrigation in karst-mountainous region of southwest China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2104-2115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||