Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 600-612.DOI: 10.3969/j.issn.1004-1524.20230477
• Environmental Science • Previous Articles Next Articles
DONG Aiqin1,2(), CHEN Yuanhua1,2, YANG Tao1,2, XU Changxu1,2, CHENG Liqun1, XIE Jie1,2,*(
)
Received:
2023-04-12
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
DONG Aiqin, CHEN Yuanhua, YANG Tao, XU Changxu, CHENG Liqun, XIE Jie. Effect of application of lime with Chinese milk vetch on the cadmium uptake in rice[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 600-612.
处理 Teatment | pH | OM/(g·kg-1) | A-Cd/(mg·kg-1) |
---|---|---|---|
CK | 5.63±0.08 c | 21.7±1.3 b | 0.256±0.03 ab |
GM | 5.67±0.17 c | 23.9±1.3 a | 0.281±0.03 a |
GM0HL | 6.38±0.33 a | 24.4±1.0 a | 0.165±0.02 c |
GM5HL | 6.41±0.17 a | 24.2±0.9 a | 0.170±0.02 c |
GM5LL | 6.01±0.04 b | 23.8±1.2 a | 0.220±0.01 b |
Table 1 Soil pH and contents of organic matter and available Cd
处理 Teatment | pH | OM/(g·kg-1) | A-Cd/(mg·kg-1) |
---|---|---|---|
CK | 5.63±0.08 c | 21.7±1.3 b | 0.256±0.03 ab |
GM | 5.67±0.17 c | 23.9±1.3 a | 0.281±0.03 a |
GM0HL | 6.38±0.33 a | 24.4±1.0 a | 0.165±0.02 c |
GM5HL | 6.41±0.17 a | 24.2±0.9 a | 0.170±0.02 c |
GM5LL | 6.01±0.04 b | 23.8±1.2 a | 0.220±0.01 b |
Fig.2 Content of Fe and Cd in root iron plaque under treatments at different growth stages DCB-Fe, Fe content in root iron plaque; DCB-Cd, Cd content in root iron plaque. Bars marked without the same letters indicate significant difference within treatments at the same growth stage at P<0.05.
Fig.3 Cd contents in different parts of rice at tillering stage(A) and mature stage (B) under treatments Bars marked without the same letters indicate significant difference within treatments for the same part at P<0.05.
处理 Treatment | TF1 | TF2 |
---|---|---|
CK | 21.54±2.16 cd | 0.77±0.12 b |
GM | 18.93±0.79 d | 0.98±0.11 a |
GM0HL | 34.20±0.59 a | 0.74±0.05 b |
GM5HL | 28.87±0.56 b | 0.64±0.03 b |
GM5LL | 23.73±3.08 c | 0.76±0.03 b |
Table 2 Cd translocation factor of rice at tillering stage under treatments
处理 Treatment | TF1 | TF2 |
---|---|---|
CK | 21.54±2.16 cd | 0.77±0.12 b |
GM | 18.93±0.79 d | 0.98±0.11 a |
GM0HL | 34.20±0.59 a | 0.74±0.05 b |
GM5HL | 28.87±0.56 b | 0.64±0.03 b |
GM5LL | 23.73±3.08 c | 0.76±0.03 b |
处理 Treatment | TF1 | TF2 | TF3 |
---|---|---|---|
CK | 86.33±5.70 b | 0.32±0.03 a | 0.17±0.01 a |
GM | 89.63±13.22 b | 0.22±0.03 c | 0.16±0.01 a |
GM0HL | 116.18±5.20 a | 0.26±0.03 bc | 0.11±0.02 b |
GM5HL | 93.44±5.47 b | 0.28±0.01 b | 0.09±0.01 c |
GM5LL | 88.24±10.07 b | 0.24±0.02 bc | 0.10±0.01 bc |
Table 3 Cd translocation factor of rice at mature stage under treatments
处理 Treatment | TF1 | TF2 | TF3 |
---|---|---|---|
CK | 86.33±5.70 b | 0.32±0.03 a | 0.17±0.01 a |
GM | 89.63±13.22 b | 0.22±0.03 c | 0.16±0.01 a |
GM0HL | 116.18±5.20 a | 0.26±0.03 bc | 0.11±0.02 b |
GM5HL | 93.44±5.47 b | 0.28±0.01 b | 0.09±0.01 c |
GM5LL | 88.24±10.07 b | 0.24±0.02 bc | 0.10±0.01 bc |
生育期 Growth stage | 变量 Variable | DCB-Cd | R-Cd | S-Cd | B-Cd |
---|---|---|---|---|---|
分蘖期Tillering stage | DCB-Fe | 0.912** | 0.430 | 0.811** | — |
DCB-Cd | 0.515* | 0.792** | — | ||
R-Cd | 0.329 | — | |||
S-Cd | — | ||||
成熟期Mature stage | DCB-Fe | 0.465 | 0.299 | 0.650** | 0.711** |
DCB-Cd | 0.829** | 0.361 | 0.367 | ||
R-Cd | 0.097 | 0.210 | |||
S-Cd | 0.543* |
Table 4 Correlation within root iron plaque and Cd content in different parts of rice at different growth stages
生育期 Growth stage | 变量 Variable | DCB-Cd | R-Cd | S-Cd | B-Cd |
---|---|---|---|---|---|
分蘖期Tillering stage | DCB-Fe | 0.912** | 0.430 | 0.811** | — |
DCB-Cd | 0.515* | 0.792** | — | ||
R-Cd | 0.329 | — | |||
S-Cd | — | ||||
成熟期Mature stage | DCB-Fe | 0.465 | 0.299 | 0.650** | 0.711** |
DCB-Cd | 0.829** | 0.361 | 0.367 | ||
R-Cd | 0.097 | 0.210 | |||
S-Cd | 0.543* |
变量 | Eh | pH | OM | A-Cd | TDCB-Fe | MDCB-Fe | TDCB-Cd |
---|---|---|---|---|---|---|---|
Variable | |||||||
pH | -0.524* | ||||||
OM | -0.694** | 0.350 | |||||
A-Cd | 0.376 | -0.932** | -0.245 | ||||
TDCB-Fe | 0.538* | -0.867** | -0.450 | 0.883** | |||
MDCB-Fe | 0.457 | -0.733** | -0.517* | 0.673** | 0.799** | ||
TDCB-Cd | 0.432 | -0.859** | -0.434 | 0.856** | 0.912** | 0.918** | |
MDCB-Cd | -0.189 | -0.498 | -0.008 | 0.597* | 0.586* | 0.465 | 0.642** |
Table 5 Correlation within soil properties and root iron plaque and Cd content in iron plaque
变量 | Eh | pH | OM | A-Cd | TDCB-Fe | MDCB-Fe | TDCB-Cd |
---|---|---|---|---|---|---|---|
Variable | |||||||
pH | -0.524* | ||||||
OM | -0.694** | 0.350 | |||||
A-Cd | 0.376 | -0.932** | -0.245 | ||||
TDCB-Fe | 0.538* | -0.867** | -0.450 | 0.883** | |||
MDCB-Fe | 0.457 | -0.733** | -0.517* | 0.673** | 0.799** | ||
TDCB-Cd | 0.432 | -0.859** | -0.434 | 0.856** | 0.912** | 0.918** | |
MDCB-Cd | -0.189 | -0.498 | -0.008 | 0.597* | 0.586* | 0.465 | 0.642** |
Fig.4 Principal component loading matrix PCA1, The 1st principle component; PCA2, The 2nd principle component; Eh, Soil oxidation-reduction potential; A-Cd, Soil available Cd content; OM, Soil organic matter content; TDCB-Fe, Fe content in root iron plaque at the tillering stage; MDCB-Fe, Fe content in root iron plaque at the mature stage; TDCB-Cd, Cd content in root iron plaque at the tillering stage; MDCB-Cd, Cd content in root iron plaque at the mature stage.
[1] | 黄道友, 朱奇宏, 朱捍华, 等. 重金属污染耕地农业安全利用研究进展与展望[J]. 农业现代化研究, 2018, 39(6): 1030-1043. |
HUANG D Y, ZHU Q H, ZHU H H, et al. Advances and prospects of safety agro-utilization of heavy metal contaminated farmland soil[J]. Research of Agricultural Modernization, 2018, 39(6): 1030-1043. (in Chinese with English abstract) | |
[2] | HUSSAIN B, ASHRAF M N, ABBAS A, et al. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies[J]. Science of the Total Environment, 2021, 754: 142188. |
[3] | ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. |
[4] | 周亮, 肖峰, 肖欢, 等. 施用石灰降低污染稻田上双季稻镉积累的效果[J]. 中国农业科学, 2021, 54(4): 780-791. |
ZHOU L, XIAO F, XIAO H, et al. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees[J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791. (in Chinese with English abstract) | |
[5] | 张庆沛, 李冰, 王昌全, 等. 秸秆还田配施无机改良剂对稻田土壤镉赋存形态及生物有效性的影响[J]. 农业环境科学学报, 2016, 35(12): 2345-2352. |
ZHANG Q P, LI B, WANG C Q, et al. Effects of combined application of straw and inorganic amendments on cadmium speciation and bioavailability in paddy soil[J]. Journal of Agro-Environment Science, 2016, 35(12): 2345-2352. (in Chinese with English abstract) | |
[6] | 张振兴, 纪雄辉, 谢运河, 等. 水稻不同生育期施用生石灰对稻米镉含量的影响[J]. 农业环境科学学报, 2016, 35(10): 1867-1872. |
ZHANG Z X, JI X H, XIE Y H, et al. Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain[J]. Journal of Agro-Environment Science, 2016, 35(10): 1867-1872. (in Chinese with English abstract) | |
[7] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[8] | 薛毅, 尹泽润, 盛浩, 等. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887. |
XUE Y, YIN Z R, SHENG H, et al. Reduction of soil cadmium activity and rice cadmium content by 4-year-consecutive application of organic fertilizer[J]. Environmental Science, 2020, 41(4): 1880-1887. (in Chinese with English abstract) | |
[9] | WANG W, LAI D Y F, WANG C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research, 2015, 152: 8-16. |
[10] | XIE J, DONG A Q, LIU J, et al. Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium[J]. Environmental Science and Pollution Research, 2019, 26(16): 16409-16421. |
[11] | 贾乐, 朱俊艳, 苏德纯. 秸秆还田对镉污染农田土壤中镉生物有效性的影响[J]. 农业环境科学学报, 2010, 29(10): 1992-1998. |
JIA L, ZHU J Y, SU D C. Effects of crop straw return on soil cadmium availability in different cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2010, 29(10): 1992-1998. (in Chinese with English abstract) | |
[12] | 胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013, 32(3): 432-437. |
HU Y, HUANG Y Z, HUANG Y C, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice(Oryza sativa L.) at different growth stages[J]. Journal of Agro-Environment Science, 2013, 32(3): 432-437. (in Chinese with English abstract) | |
[13] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-201. |
[14] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤质量有效态铅和镉的测定原子吸收法: GB/T 23739—2009[S]. 北京: 中国标准出版社, 2009. |
[15] | 王飞, 王建国, 刘登望, 等. 不同花生品种对稻田镉富集及转运的研究[J]. 中国油料作物学报, 2019, 41(4): 568-576. |
WANG F, WANG J G, LIU D W, et al. Cadmium concentration and translocation in paddy fields with different peanut varieties[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 568-576. (in Chinese with English abstract) | |
[16] | 杨国航, 李琼, 和利钊, 等. 晚稻全生育期Cd的迁移转化规律及预测模型研究[J]. 中国农学通报, 2021, 37(25): 1-10. |
YANG G H, LI Q, HE L Z, et al. Study on the migration, transformation and prediction model of cadmium in the whole growth stage of late rice[J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 1-10. (in Chinese with English abstract) | |
[17] | DU J N, YAN C L, LI Z D. Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation[J]. Marine Pollution Bulletin, 2013, 74(1): 105-109. |
[18] | LIU J G, CAO C X, WONG M, et al. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake[J]. Journal of Environmental Sciences, 2010, 22(7): 1067-1072. |
[19] | 刘敏超, 李花粉, 夏立江, 等. 根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J]. 生态学报, 2001, 21(4): 598-602. |
LIU M C, LI H F, XIA L J, et al. Effect of Fe, Mn coating formed on roots on Cd uptake by rice varieties[J]. Acta Ecologica Sinica, 2001, 21(4): 598-602. (in Chinese with English abstract) | |
[20] | 张玉盛, 肖欢, 敖和军. 外部条件对水稻镉吸收的影响研究进展[J]. 作物研究, 2019, 33(4): 331-337. |
ZHANG Y S, XIAO H, AO H J. Advances in studies on the effects of external conditions on cadmium uptake in rice[J]. Crop Research, 2019, 33(4): 331-337. (in Chinese with English abstract) | |
[21] | 刘文菊, 张西科, 张福锁. 根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J]. 土壤学报, 1999, 36(4): 463-469. |
LIU W J, ZHANG X K, ZHANG F S. Effects of iron oxides and root exudates on cadmium uptake by rice[J]. Acta Pedologica Sinica, 1999, 36(4): 463-469. (in Chinese with English abstract) | |
[22] | 赵宇浩, 杨玉红, 赵浩东, 等. 基于主成分分析的沈阳地区水稻土镉污染修复剂修复效果评估[J]. 土壤通报, 2021, 52(5): 1220-1226. |
ZHAO Y H, YANG Y H, ZHAO H D, et al. Evaluating remediation effects of remediation agents on cadmium-contaminated paddy soil in Shenyang based on principal component analysis method[J]. Chinese Journal of Soil Science, 2021, 52(5): 1220-1226. (in Chinese with English abstract) | |
[23] | 范美蓉, 张春霞, 廖育林, 等. 不同品种紫云英对镉污染土壤水稻生长累积效应的研究[J]. 中国农学通报, 2020, 36(20): 72-76. |
FAN M R, ZHANG C X, LIAO Y L, et al. Chinese milk vetch varieties: accumulation effect on the rice growth in cadmium contaminated soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 72-76. (in Chinese with English abstract) | |
[24] | 谢杰, 董爱琴, 徐昌旭, 等. 紫云英长期还田对稻田土壤Cd含量与形态的影响[J]. 浙江农业学报, 2019, 31(12): 2084-2094. |
XIE J, DONG A Q, XU C X, et al. Impact of long-term returning of Astragalus sinicus L. on content and forms of Cd in different depths of paddy soils[J]. Acta Agriculturae Zhejiangensis, 2019, 31(12): 2084-2094. (in Chinese with English abstract) | |
[25] | 林新坚, 兰忠明, 张辉, 等. 不同紫云英基因型根系分泌物中有机酸成分分析[J]. 草业学报, 2014, 23(4): 146-152. |
LIN X J, LAN Z M, ZHANG H, et al. Organic acid composition analysis of root exudation of Chinese milk vetch genotypes[J]. Acta Prataculturae Sinica, 2014, 23(4): 146-152. (in Chinese with English abstract) | |
[26] | 高金涛, 王晓玥, 周兴, 等. 调理剂配合紫云英还田降低水稻土镉的生物有效性[J]. 植物营养与肥料学报, 2022, 28(10): 1828-1839. |
GAO J T, WANG X Y, ZHOU X, et al. Soil conditioners with Chinese milk vetch reduce Cd bioavailability in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1828-1839. (in Chinese with English abstract) | |
[27] | 王阳, 刘恩玲, 王奇赞, 等. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189-193. |
WANG Y, LIU E L, WANG Q Z, et al. Effects of milk vetch on cadmium and lead accumulation in rice[J]. Journal of Soil and Water Conservation, 2013, 27(2): 189-193. (in Chinese with English abstract) | |
[28] | 张成兰, 刘春增, 吕玉虎, 等. 减量化肥配施不同量紫云英对土壤磷素形态及水稻产量的影响[J]. 中国土壤与肥料, 2020(1): 100-106. |
ZHANG C L, LIU C Z, LÜ Y H, et al. Effects of the combination of reduced chemical fertilizer and various amounts of Chinese milk vetch (Astragalus sinicus L.) on soil phosphorus forms and rice yield[J]. Soil and Fertilizer Sciences in China, 2020(1): 100-106. (in Chinese with English abstract) | |
[29] | 刘春增, 常单娜, 李本银, 等. 种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响[J]. 土壤学报, 2017, 54(3): 657-669. |
LIU C Z, CHANG D N, LI B Y, et al. Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil[J]. Acta Pedologica Sinica, 2017, 54(3): 657-669. (in Chinese with English abstract) | |
[30] | 刘国顺, 罗贞宝, 王岩, 等. 绿肥翻压对烟田土壤理化性状及土壤微生物量的影响[J]. 水土保持学报, 2006, 20(1): 95-98. |
LIU G S, LUO Z B, WANG Y, et al. Effect of green manure application on soil properties and soil microbial biomass in tobacco field[J]. Journal of Soil and Water Conservation, 2006, 20(1): 95-98. (in Chinese with English abstract) | |
[31] | 窦韦强, 安毅, 秦莉, 等. 土壤pH对镉形态影响的研究进展[J]. 土壤, 2020, 52(3): 439-444. |
DOU W Q, AN Y, QIN L, et al. Advances in effects of soil pH on cadmium form[J]. Soils, 2020, 52(3): 439-444. (in Chinese with English abstract) | |
[32] | CROWDER A A, COLTMAN D W. Formation of manganese oxide plaque on rice roots in solution culture under varying pH and manganese (Mn2+) concentration conditions[J]. Journal of Plant Nutrition, 1993, 16(4): 589-599. |
[33] | 傅友强, 于智卫, 蔡昆争, 等. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报, 2010, 16(6): 1527-1534. |
FU Y Q, YU Z W, CAI K Z, et al. Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects: a review[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1527-1534. (in Chinese with English abstract) | |
[34] | 刘文菊, 朱永官. 湿地植物根表的铁锰氧化物膜[J]. 生态学报, 2005, 25(2): 358-363. |
LIU W J, ZHU Y G. Iron and Mn plaques on the surface of roots of wetland plants[J]. Acta Ecologica Sinica, 2005, 25(2): 358-363. (in Chinese with English abstract) | |
[35] | 刘侯俊, 张俊伶, 韩晓日, 等. 根表铁膜对元素吸收的效应及其影响因素[J]. 土壤, 2009, 41(3): 335-343. |
LIU H J, ZHANG J L, HAN X R, et al. Influences of iron plaque on element uptake by plants and its affecting factors[J]. Soils, 2009, 41(3): 335-343. (in Chinese with English abstract) | |
[36] | 李忠义, 张静静, 蒙炎成, 等. 绿肥还田腐解特征及培肥地力研究进展[J]. 江苏农业科学, 2017, 45(22): 14-18. |
LI Z Y, ZHANG J J, MENG Y C, et al. Research progress on decomposition characteristics and fertility improvement of green manure returning to field[J]. Jiangsu Agricultural Sciences, 2017, 45(22): 14-18. (in Chinese) | |
[37] | 李学垣, 韩德乾. 绿肥压青后水稻生育期间土壤中还原性物质的动态变化[J]. 土壤学报, 1966, 3(1): 59-64. |
LI X Y, HAN D Q. The dynamical equilibrium of soil reductive substances after green-manuring for rice culture[J]. Acta Pedologica Sinica, 1966, 3(1): 59-64. (in Chinese with English abstract) | |
[38] | TIAN G, BADEJO M A, OKOH A I, et al. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa[J]. Biogeochemistry, 2007, 86(2): 217-229. |
[39] | 常单娜, 刘春增, 李本银, 等. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响[J]. 草业学报, 2018, 27(12): 133-144. |
CHANG D N, LIU C Z, LI B Y, et al. Effects of incorporating Chinese milk vetch on reductive material characteristics and greenhouse gas emissions in paddy soil[J]. Acta Prataculturae Sinica, 2018, 27(12): 133-144. (in Chinese with English abstract) | |
[40] | 邓小华, 罗伟, 周米良, 等. 绿肥在湘西烟田中的腐解和养分释放动态[J]. 烟草科技, 2015, 48(6): 13-18. |
DENG X H, LUO W, ZHOU M L, et al. Dynamics of decomposition and nutrient release of green manures in tobacco fields in Xiangxi[J]. Tobacco Science & Technology, 2015, 48(6): 13-18. (in Chinese with English abstract) | |
[41] | 肖德顺, 徐冉, 王丹英, 等. 根表铁膜对水稻磷素吸收影响研究进展[J]. 中国稻米, 2022, 28(4): 1-5. |
XIAO D S, XU R, WANG D Y, et al. Research progress on effect of root surface iron plaque on rice phosphorus absorption[J]. China Rice, 2022, 28(4): 1-5. (in Chinese with English abstract) | |
[42] | 吕本春, 付利波, 湛方栋, 等. 绿肥作物矿化分解对土壤镉有效性的影响研究进展[J]. 农业资源与环境学报, 2021, 38(3): 431-441. |
LÜ B C, FU L B, ZHAN F D, et al. Research advance on the effect of mineralization and decomposition of green manure crops on soil cadmium availability[J]. Journal of Agricultural Resources and Environment, 2021, 38(3): 431-441. (in Chinese with English abstract) | |
[43] | ZHENG S N, ZHANG M K. Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011, 23(3): 434-443. |
[44] | SIX J. Plant nutrition for sustainable development and global health[J]. Plant and Soil, 2011, 339(1): 1-2. |
[45] | JANOŠ P, VÁVROVÁ J, HERZOGOVÁ L, et al. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study[J]. Geoderma, 2010, 159(3/4): 335-341. |
[46] | 吴烈善, 曾东梅, 莫小荣, 等. 不同钝化剂对重金属污染土壤稳定化效应的研究[J]. 环境科学, 2015, 36(1): 309-313. |
WU L S, ZENG D M, MO X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil[J]. Environmental Science, 2015, 36(1): 309-313. (in Chinese with English abstract) |
[1] | YE Qin, MENG Xianghe, CHEN Lihong. Effects of rice bran curing on physicochemical quality and fat oxidation characteristics of sauce duck [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 634-642. |
[2] | ZHANG Bin, YUAN Zhihui, PENG Lujun, ZHOU Xiangping, ZHOU Deying, WANG Xichun. Fermented rice husk affects the growth and development of tobacco seedlings by enhancing nitrogen metabolism pathway [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 237-246. |
[3] | PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253. |
[4] | ZHENG Han, DING Wenjin, HE Zhaoliang, HOU Fan, DAI Binfeng, ZHONG Liequan, ZHANG Haipeng, YANG Yong. Research progress on effects of high temperature on growth and development of rice during panicle initiation stage and mitigation measures [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 470-480. |
[5] | YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8. |
[6] | LUO Yingjie, CUI Weijun, WANG Zhonghua, WU Yueyan, LIN Hongyou, ZHOU Jie, YAN Chengqi, WANG Xuming. Interaction analysis between rice ubiquitin ligase D3 and the disease resistance associated protein VOZ2 [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 9-17. |
[7] | ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. |
[8] | WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252. |
[9] | ZHANG Chaozheng, ZHANG Xupeng, CHEN Danling. Does labor force aging and cultivated land fragmentation increase rice production cost?: based on microscopic investigation in southeast Hubei Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1211-1222. |
[10] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
[11] | JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982. |
[12] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[13] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[14] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[15] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 926
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||