Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 417-424.DOI: 10.3969/j.issn.1004-1524.2023.02.19
• Environmental Science • Previous Articles Next Articles
WU Shaofu1(), NI Yuanjun2, ZHAN Lichuan2, PENG Lu3, WU Yingjie3,*(
)
Received:
2022-01-07
Online:
2023-02-25
Published:
2023-03-14
Contact:
WU Yingjie
CLC Number:
WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.02.19
处理 Treatment | pH | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | Fe/(mg·kg-1) | Zn/(mg·kg-1) |
---|---|---|---|---|---|
CK | 4.92±0.13 c | 41.37±1.58 a | 111.09±4.32 b | 11 272.65±219.34 b | 49.75±2.63 b |
T1 | 5.86±0.01 a | 31.96±2.11 c | 109.27±5.68 b | 10 946.22±265.11 b | 47.87±4.83 b |
T2 | 5.25±0.31 b | 35.51±1.07 b | 107.42±3.56 b | 11 323.53±255.66 b | 47.76±1.29 b |
T3 | 5.68±0.32 a | 42.68±1.22 a | 145.86±2.65 a | 12 143.09±493.85 a | 64.88±6.48 a |
Table 1 Effects of different treatments on soil physiochemical properties
处理 Treatment | pH | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | Fe/(mg·kg-1) | Zn/(mg·kg-1) |
---|---|---|---|---|---|
CK | 4.92±0.13 c | 41.37±1.58 a | 111.09±4.32 b | 11 272.65±219.34 b | 49.75±2.63 b |
T1 | 5.86±0.01 a | 31.96±2.11 c | 109.27±5.68 b | 10 946.22±265.11 b | 47.87±4.83 b |
T2 | 5.25±0.31 b | 35.51±1.07 b | 107.42±3.56 b | 11 323.53±255.66 b | 47.76±1.29 b |
T3 | 5.68±0.32 a | 42.68±1.22 a | 145.86±2.65 a | 12 143.09±493.85 a | 64.88±6.48 a |
Fig.1 Effects of different treatments on Cd, Hg content in soil Bars marked without the same letters indicate signficant (P<0.05) differences within treatments under the same index.
Fig.2 Effects of different treatments on Cd and Hg contents in different parts of rice Bars marked without the same letters indicate significact (P<0.05) differences within treatments in the smae part of rice.
重金属 Heavy metal | 处理 Treatment | 根 Root | 秸秆 Straw | 谷壳 Husk | 糙米 Brown rice |
---|---|---|---|---|---|
Cd | CK | 8.54±2.06 a | 1.58±0.11 a | 0.66±0.04 a | 0.80±0.08 a |
T1 | 7.10±1.40 b | 1.40±0.17 a | 0.55±0.02 ab | 0.44±0.07 b | |
T2 | 6.36±0.87 b | 1.30±0.13 a | 0.40±0.01 b | 0.40±0.01 b | |
T3 | 7.51±3.00 b | 1.53±0.38 a | 0.52±0.20 ab | 0.48±0.20 b | |
Hg | CK | 1.174±0.249 a | 0.046±0.001 a | 0.051±0.005 a | 0.049±0.003 a |
T1 | 0.887±0.195 b | 0.038±0.010 a | 0.043±0.018 a | 0.039±0.007 a | |
T2 | 0.617±0.140 b | 0.039±0.005 a | 0.037±0.005 a | 0.040±0.002 a | |
T3 | 0.828±0.215 b | 0.044±0.003 a | 0.051±0.012 a | 0.048±0.008 a |
Table 2 Effects of different treatments on Cd and Hg bioconcentration factor (BCF) in different parts of rice
重金属 Heavy metal | 处理 Treatment | 根 Root | 秸秆 Straw | 谷壳 Husk | 糙米 Brown rice |
---|---|---|---|---|---|
Cd | CK | 8.54±2.06 a | 1.58±0.11 a | 0.66±0.04 a | 0.80±0.08 a |
T1 | 7.10±1.40 b | 1.40±0.17 a | 0.55±0.02 ab | 0.44±0.07 b | |
T2 | 6.36±0.87 b | 1.30±0.13 a | 0.40±0.01 b | 0.40±0.01 b | |
T3 | 7.51±3.00 b | 1.53±0.38 a | 0.52±0.20 ab | 0.48±0.20 b | |
Hg | CK | 1.174±0.249 a | 0.046±0.001 a | 0.051±0.005 a | 0.049±0.003 a |
T1 | 0.887±0.195 b | 0.038±0.010 a | 0.043±0.018 a | 0.039±0.007 a | |
T2 | 0.617±0.140 b | 0.039±0.005 a | 0.037±0.005 a | 0.040±0.002 a | |
T3 | 0.828±0.215 b | 0.044±0.003 a | 0.051±0.012 a | 0.048±0.008 a |
处理 Treatments | 根 Root | 秸秆 Straw | 稻穗 Rice ears |
---|---|---|---|
CK | 18.25±3.32 b | 52.29±0.36 a | 24.09±1.14 a |
T1 | 24.17±0.59 a | 48.76±5.76 a | 19.92±4.98 a |
T2 | 26.59±0.86 a | 42.66±5.60 ab | 24.25±2.64 a |
T3 | 24.83±0.44 a | 34.76±2.53 b | 20.10±0.08 a |
Table 3 Effects of different treatments on dry weight of different parts of rice g
处理 Treatments | 根 Root | 秸秆 Straw | 稻穗 Rice ears |
---|---|---|---|
CK | 18.25±3.32 b | 52.29±0.36 a | 24.09±1.14 a |
T1 | 24.17±0.59 a | 48.76±5.76 a | 19.92±4.98 a |
T2 | 26.59±0.86 a | 42.66±5.60 ab | 24.25±2.64 a |
T3 | 24.83±0.44 a | 34.76±2.53 b | 20.10±0.08 a |
处理 Treatment | Fe | Zn |
---|---|---|
CK | 5.25±1.82 b | 36.18±1.09 b |
T1 | 5.95±0.29 b | 38.78±0.44 b |
T2 | 5.03±0.69 b | 39.46±0.19 b |
T3 | 21.57±5.74 a | 60.84±1.44 a |
Table 4 Effects of different treatments on Fe and Zn contents of brown rice mg·kg-1
处理 Treatment | Fe | Zn |
---|---|---|
CK | 5.25±1.82 b | 36.18±1.09 b |
T1 | 5.95±0.29 b | 38.78±0.44 b |
T2 | 5.03±0.69 b | 39.46±0.19 b |
T3 | 21.57±5.74 a | 60.84±1.44 a |
[1] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R/OL]. ( 2014-04-17) [2022-01-07]. http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf. |
[2] | 黄冬芬, 奚岭林, 杨立年, 等. 不同耐镉基因型水稻农艺和生理性状的比较研究[J]. 作物学报, 2008, 34(5): 809-817. |
HUANG D F, XI L L, YANG L N, et al. Comparisons in agronomic and physiological traits of rice genotypes differing in cadmium-tolerance[J]. Acta Agronomica Sinica, 2008, 34(5): 809-817. (in Chinese with English abstract) | |
[3] | ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2/3/4): 121-142. |
[4] | ZHOU Y Y, TANG L, ZENG G M, et al. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review[J]. Sensors and Actuators B: Chemical, 2016, 223: 280-294. |
[5] | TANG X, LI Q, WU M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181: 646-662. |
[6] | LEE S H, LEE J S, JEONG CHOI Y, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments[J]. Chemosphere, 2009, 77(8): 1069-1075. |
[7] | MENCH M, RENELLA G, GELSOMINO A, et al. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments[J]. Environmental Pollution, 2006, 144(1): 24-31. |
[8] | 何凤鹏, 谷雨, 冯光辉, 等. 不同类型土壤调理剂对土壤-水稻系统重金属含量的影响[J]. 湖南农业科学, 2016(5): 31-34. |
HE F P, GU Y, FENG G H, et al. Effects of different types of soil conditioners on heavy metal content in soil-rice system[J]. Hunan Agricultural Sciences, 2016(5): 31-34. (in Chinese with English abstract) | |
[9] | 曾鹏, 蒋毅, 辜娇峰, 等. 多元复合调理剂对镉砷污染农田土壤微生物群落结构的影响[J]. 中国环境科学, 2021, 41(8): 3740-3748. |
ZENG P, JIANG Y, GU J F, et al. Effects of the multi-composite amendment on soil microbial community structure in Cd and As-contaminated paddy soil[J]. China Environmental Science, 2021, 41(8): 3740-3748. (in Chinese with English abstract) | |
[10] | 周利军, 武琳, 林小兵, 等. 土壤调理剂对镉污染稻田修复效果[J]. 环境科学, 2019, 40(11): 5098-5106. |
ZHOU L J, WU L, LIN X B, et al. Remediation of cadmium contaminated paddy fields using soil conditioners[J]. Environmental Science, 2019, 40(11): 5098-5106. (in Chinese with English abstract) | |
[11] | 田中学. 四种土壤调理剂对污染土壤镉行为的影响[D]. 北京: 中国农业科学院, 2017. |
TIAN Z X. Effect of four soil amendments on behavior of cadmium in polluted soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
[12] | 辜娇峰, 周航, 贾润语, 等. 三元土壤调理剂对田间水稻镉砷累积转运的影响[J]. 环境科学, 2018, 39(4): 1910-1917. |
GU J F, ZHOU H, JIA R Y, et al. Effects of a tribasic amendment on cadmium and arsenic accumulation and translocation in rice in a field experiment[J]. Environmental Science, 2018, 39(4): 1910-1917. (in Chinese with English abstract) | |
[13] | 李心, 林大松, 刘岩, 等. 不同土壤调理剂对镉污染水稻田控镉效应研究[J]. 农业环境科学学报, 2018, 37(7): 1511-1520. |
LI X, LIN D S, LIU Y, et al. Effects of different soil conditioners on cadmium control in cadmium-contaminated paddy fields[J]. Journal of Agro-Environment Science, 2018, 37(7): 1511-1520. (in Chinese with English abstract) | |
[14] | SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208: 739-746. |
[15] | RAO Z X, HUANG D Y, ZHU Q H, et al. Effects of amendments on the availability of Cd in contaminated paddy soil: a three-year field experiment[J]. Journal of Food, Agriculture and Environment, 2013, 11(3): 2009-2014. |
[16] | 于寿娜, 廖敏, 黄昌勇. 镉、 汞复合污染对土壤脲酶和酸性磷酸酶活性的影响[J]. 应用生态学报, 2008, 19(8): 1841-1847. |
YU S N, LIAO M, HUANG C Y. Effects of cadmium and mercury combined pollution on soil urease and acid phosphatase activities[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1841-1847. (in Chinese with English abstract) | |
[17] | 陈芬, 余高, 吴涵茜, 等. 中药渣生物有机肥对镉-汞复合污染土壤的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 737-747. |
CHEN F, YU G, WU H Q, et al. Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 737-747. (in Chinese with English abstract) | |
[18] | CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review[J]. European Journal of Soil Science, 2018, 69(1):172-180. |
[19] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[20] | 张肖静, 陈涛, 傅浩强. 土壤中重金属有效态汞的快速检测[J]. 轻工学报, 2018, 33(1): 49-55. |
ZHANG X J, CHEN T, FU H Q. Quick detection of heavy metal absorbable mercury in soil[J]. Journal of Light Industry, 2018, 33(1): 49-55. (in Chinese with English abstract) | |
[21] | LI H, LIU Y, ZHOU Y Y, et al. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice[J]. Science of the Total Environment, 2018, 640/641: 736-745. |
[22] | 窦韦强, 安毅, 秦莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019, 36(1): 1-8. |
DOU W Q, AN Y, QIN L, et al. Research progress on effects of soil pH on migration and transformation of mercury[J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 1-8. (in Chinese with English abstract) | |
[23] | LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. |
[24] | WU Y J, ZHOU H, ZOU Z J, et al. A three-year in situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170. |
[25] | GU J F, ZHOU H, TANG H L, et al. Cadmium and arsenic accumulation during the rice growth period under in situ remediation[J]. Ecotoxicology and Environmental Safety, 2019, 171: 451-459. |
[26] | 戴佰林. 重金属污染水稻中镉的减量化控制技术研究[D]. 株洲: 湖南工业大学, 2015. |
DAI B L. Studies on the reduction control technology of cadmium in heavy metal polluted rice[D]. Zhuzhou: Hunan University of Technology, 2015. (in Chinese with English abstract) | |
[27] | 王艳, 兰向东, 陈钊, 等. 糙米、胚芽米和精白米营养成分分析[J]. 食品科技, 2016, 41(11): 156-159. |
WANG Y, LAN X D, CHEN Z, et al. Analysis of nutrition components in brown rice, germinated rice, and polished rice[J]. Food Science and Technology, 2016, 41(11): 156-159. (in Chinese with English abstract) | |
[28] | 赵莎莎, 肖广全, 陈玉成, 等. 不同施用量石灰和生物炭对稻田镉污染钝化的延续效应[J]. 水土保持学报, 2021, 35(1): 334-340. |
ZHAO S S, XIAO G Q, CHEN Y C, et al. Continuous effect of different application rates of lime and biochar on the passivation of cadmium pollution in paddy fields[J]. Journal of Soil and Water Conservation, 2021, 35(1): 334-340. (in Chinese with English abstract) | |
[29] | 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497. |
YAN D M, GUO Z H, HUANG F L, et al. Effect of calcium magnesium phosphate on remediation paddy soil contaminated with cadmium using lime and sepiolite[J]. Environmental Science, 2020, 41(3): 1491-1497. (in Chinese with English abstract) | |
[30] | 谢晓梅, 方至萍, 廖敏, 等. 低积累水稻品种联合腐殖酸、海泡石保障重镉污染稻田安全生产的潜力[J]. 环境科学, 2018, 39(9): 4348-4358. |
XIE X M, FANG Z P, LIAO M, et al. Potential to ensure safe production from rice fields polluted with heavy cadmium by combining a rice variety with low cadmium accumulation, humic acid, and sepiolite[J]. Environmental Science, 2018, 39(9): 4348-4358. (in Chinese with English abstract) |
[1] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[2] | FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. |
[3] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
[4] | YANG Shengling, HUANG Xingcheng, LI Yu, LIU Yanling, ZHANG Yarong, ZHANG Yan, ZHANG Wen’an, JIANG Taiming. Effects of long-term organic and inorganic fertilizer application on growth, dry matter accumulation and yield of rice [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1815-1825. |
[5] | WANG Chen, ZHANG Min, WANG Zhenqi, QIAN Xiaoyong, XU Chang, NI Yuanzhi, LI Jinwen, SHEN Genxiang. Migration regularity and accumulation risk of heavy metals after continuous application of swine manure in paddy soils [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1985-1994. |
[6] | YANG Hailong, WANG Hui, LEI Jinchao, CAI Jinyang. Analysis and evaluation of phenotypic diversities of early indica rice germplasm resources in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1571-1581. |
[7] | HUANG Feng, XING Jianping, FU Shaohuai, PAN Pan, WU Lin, LIU Beibei, CHEN Miao. Effects of different safe utilization technologies on cadmium reduction in rice-vegetable rotation system in northern Hainan, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1725-1733. |
[8] | HUANG Donghui, ZHONG Peng, WANG Jianli, HU Yunlong, WANG Zhigang. Effects of environmental conditions on biofilm formation of Bacillus altitudinis LZP02 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1466-1473. |
[9] | LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501. |
[10] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[11] | TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257. |
[12] | ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267. |
[13] | YE Ying, ZHAO Kaocheng, MA Jun, ZHU Ke, ZHUANG Hengyang. Effects of sowing date and nitrogen application rate on grain yield and nitrogen utilization of rice variety Nanjing 9108 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 879-886. |
[14] | ZHANG Peng, YANG Xueyan, HONG Jing, ZHANG Yali, TIAN Xiaojing, ZHANG Fumei, CAO Hong, CHEN Shi’en, MA Zhongren, DING Gongtao, SONG Li, LUO Li. Enrichment of trace elements in soil-tea system in Meitan tea area of Guizhou and origin traceability [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 378-390. |
[15] | WANG Baojun, CHENG Wangda, SHEN Yaqiang, CHEN Zhaogui, PENG Yuhui, ZHU Jiawei, HUANG Jiapin, ZHANG Hongmei. Selection and comprehensive evaluation of special glutinous rice varieties for dumpling in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2583-2593. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||