Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 434-444.DOI: 10.3969/j.issn.1004-1524.2023.02.21
• Biosystems Engineering • Previous Articles Next Articles
FAN Chuang(), ZHAO Zihao, ZHANG Xuesong(
), YANG Shenbin
Received:
2022-04-19
Online:
2023-02-25
Published:
2023-03-14
Contact:
ZHANG Xuesong
CLC Number:
FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.02.21
物候期 Phenological period | RMSE/d | r | MAE/d |
---|---|---|---|
出苗Emergence | 2.2 | 0.99** | 1.6 |
移栽Transplanting | 8.8 | 0.77** | 6.4 |
拔节Jointing | 6.6 | 0.83** | 5.1 |
抽穗Heading | 5.5 | 0.89** | 4.2 |
成熟Mature | 6.7 | 0.90** | 5.1 |
Table 1 Evaluation result of effective accumulated temperature model
物候期 Phenological period | RMSE/d | r | MAE/d |
---|---|---|---|
出苗Emergence | 2.2 | 0.99** | 1.6 |
移栽Transplanting | 8.8 | 0.77** | 6.4 |
拔节Jointing | 6.6 | 0.83** | 5.1 |
抽穗Heading | 5.5 | 0.89** | 4.2 |
成熟Mature | 6.7 | 0.90** | 5.1 |
Fig.1 Fitting effect of T-RH model on training set a, Sowing-emergence; b, Emergence-transplanting; c, Transplanting-jointing; d, Jointing-heading; e, Heading-mature. The same as in Fig.2.
评价指标 Evaluation indicator | 发育阶段 Developmental stage | T模型 T model | T-P模型 T-P model | T-S模型 T-S model | T-RH模型 T-RH model | ||||
---|---|---|---|---|---|---|---|---|---|
训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | ||
RMSE/d | 播种-出苗 | 0.6 | 0.7 | 0.6 | 0.7 | 0.6 | 0.6 | 0.3 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 2.5 | 1.8 | 2.3 | 2.1 | 2.2 | 1.8 | 1.1 | 1.2 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 2.1 | 2.4 | 2.0 | 2.2 | 1.9 | 2.1 | 0.9 | 1.2 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.7 | 1.5 | 1.6 | 1.3 | 1.5 | 1.3 | 0.6 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.9 | 1.6 | 1.7 | 1.4 | 1.7 | 1.9 | 0.9 | 0.8 | |
Heading-mature | |||||||||
r | 播种-出苗 | 0.93** | 0.89** | 0.94** | 0.90** | 0.94** | 0.91** | 0.96** | 0.98** |
Sowing-emergence | |||||||||
出苗-移栽 | 0.91** | 0.96** | 0.93** | 0.95** | 0.93** | 0.96** | 0.97** | 0.99** | |
Emergence-transplanting | |||||||||
移栽-拔节 | 0.86** | 0.92** | 0.88** | 0.93** | 0.89** | 0.95** | 0.98** | 0.97** | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 0.92** | 0.95** | 0.94** | 0.96** | 0.94** | 0.97** | 0.96** | 0.99** | |
Jointing-heading | |||||||||
抽穗-成熟 | 0.95** | 0.96** | 0.97** | 0.97** | 0.96** | 0.95** | 0.98** | 0.98** | |
Heading-mature | |||||||||
MAE/d | 播种-出苗 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.2 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 1.9 | 1.6 | 1.8 | 1.9 | 1.7 | 1.5 | 0.8 | 1.1 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 1.6 | 2.0 | 1.5 | 1.9 | 1.4 | 1.7 | 0.7 | 1.1 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.4 | 1.2 | 1.2 | 1.0 | 1.2 | 1.0 | 0.5 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.5 | 1.3 | 1.3 | 0.9 | 1.3 | 1.5 | 0.7 | 0.6 | |
Heading-mature |
Table 2 Evaluation result of BP neural network model on training set and test set
评价指标 Evaluation indicator | 发育阶段 Developmental stage | T模型 T model | T-P模型 T-P model | T-S模型 T-S model | T-RH模型 T-RH model | ||||
---|---|---|---|---|---|---|---|---|---|
训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | ||
RMSE/d | 播种-出苗 | 0.6 | 0.7 | 0.6 | 0.7 | 0.6 | 0.6 | 0.3 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 2.5 | 1.8 | 2.3 | 2.1 | 2.2 | 1.8 | 1.1 | 1.2 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 2.1 | 2.4 | 2.0 | 2.2 | 1.9 | 2.1 | 0.9 | 1.2 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.7 | 1.5 | 1.6 | 1.3 | 1.5 | 1.3 | 0.6 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.9 | 1.6 | 1.7 | 1.4 | 1.7 | 1.9 | 0.9 | 0.8 | |
Heading-mature | |||||||||
r | 播种-出苗 | 0.93** | 0.89** | 0.94** | 0.90** | 0.94** | 0.91** | 0.96** | 0.98** |
Sowing-emergence | |||||||||
出苗-移栽 | 0.91** | 0.96** | 0.93** | 0.95** | 0.93** | 0.96** | 0.97** | 0.99** | |
Emergence-transplanting | |||||||||
移栽-拔节 | 0.86** | 0.92** | 0.88** | 0.93** | 0.89** | 0.95** | 0.98** | 0.97** | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 0.92** | 0.95** | 0.94** | 0.96** | 0.94** | 0.97** | 0.96** | 0.99** | |
Jointing-heading | |||||||||
抽穗-成熟 | 0.95** | 0.96** | 0.97** | 0.97** | 0.96** | 0.95** | 0.98** | 0.98** | |
Heading-mature | |||||||||
MAE/d | 播种-出苗 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.2 | 0.3 |
Sowing-emergence | |||||||||
出苗-移栽 | 1.9 | 1.6 | 1.8 | 1.9 | 1.7 | 1.5 | 0.8 | 1.1 | |
Emergence-transplanting | |||||||||
移栽-拔节 | 1.6 | 2.0 | 1.5 | 1.9 | 1.4 | 1.7 | 0.7 | 1.1 | |
Transplanting-jointing | |||||||||
拔节-抽穗 | 1.4 | 1.2 | 1.2 | 1.0 | 1.2 | 1.0 | 0.5 | 0.7 | |
Jointing-heading | |||||||||
抽穗-成熟 | 1.5 | 1.3 | 1.3 | 0.9 | 1.3 | 1.5 | 0.7 | 0.6 | |
Heading-mature |
Fig.3 Evaluation result of models with different number of nodes in middle layers a, b, Transplanting-jointing; c, d, Jointing-heading; e, f, Heading-mature. a, c, e, Training set; b, d, f, Test set.The same as in Fig.4.
发育阶段 Development stage | 实际平均 天数 Actual average days/d | RMSE/d | r | MAE/d |
---|---|---|---|---|
播种-出苗 | 6 | 0.3 | 0.97** | 0.2 |
Sowing-emergence | ||||
出苗-移栽 | 33 | 1.2 | 0.99** | 0.9 |
Emergence-transplanting | ||||
移栽-拔节 | 43 | 1.2 | 0.98** | 0.9 |
Transplanting-jointing | ||||
拔节-抽穗 | 28 | 0.7 | 0.99** | 0.5 |
Jointing-heading | ||||
抽穗-成熟 | 37 | 0.8 | 0.99** | 0.6 |
Heading-mature |
Table 3 Evaluation result of T-RH model on test set after parameter optimization
发育阶段 Development stage | 实际平均 天数 Actual average days/d | RMSE/d | r | MAE/d |
---|---|---|---|---|
播种-出苗 | 6 | 0.3 | 0.97** | 0.2 |
Sowing-emergence | ||||
出苗-移栽 | 33 | 1.2 | 0.99** | 0.9 |
Emergence-transplanting | ||||
移栽-拔节 | 43 | 1.2 | 0.98** | 0.9 |
Transplanting-jointing | ||||
拔节-抽穗 | 28 | 0.7 | 0.99** | 0.5 |
Jointing-heading | ||||
抽穗-成熟 | 37 | 0.8 | 0.99** | 0.6 |
Heading-mature |
[1] | 高益波, 景元书, 刘明璐, 等. 抽穗扬花期低温强度对水稻生长发育的影响与模拟[J]. 江苏农业科学, 2018, 46(5): 53-57. |
GAO Y B, JING Y S, LIU M L, et al. Influence and simulation of cold damage degree on rice growth during heading and flowering stage[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 53-57. (in Chinese) | |
[2] | 邱新法, 王喆, 曾燕, 等. 1960—2013年中国≥10 ℃积温时空变化特征及其主导因素分析[J]. 江苏农业科学, 2017, 45(2): 220-225. |
QIU X F, WANG Z, ZENG Y, et al. Spatial-temporal variation of accumulated temperature ≥10 ℃ in China during 1960-2013 and its leading factors[J]. Jiangsu Agricultural Sciences, 2017, 45(2): 220-225. (in Chinese) | |
[3] | MCMASTER G. Growing degree-days: one equation, two interpretations[J]. Agricultural and Forest Meteorology, 1997, 87(4): 291-300. |
[4] | 郑大玮, 孙忠富. 关于积温一词及其度量单位科学性问题的讨论[J]. 中国农业气象, 2010, 31(2): 165-169. |
ZHENG D W, SUN Z F. Discussion on scientificalness problem of accumulated temperature and its unit[J]. Chinese Journal of Agrometeorology, 2010, 31(2): 165-169. (in Chinese with English abstract) | |
[5] | MCMASTER G S, LECAIN D R, MORGAN J A, et al. Elevated CO2 increases wheat CER, leaf and tiller development, and shoot and root growth[J]. Journal of Agronomy and Crop Science, 1999, 183(2): 119-128. |
[6] | 冯利平, 高亮之, 金之庆, 等. 小麦发育期动态模拟模型的研究[J]. 作物学报, 1997, 23(4): 418-424. |
FENG L P, GAO L Z, JIN Z Q, et al. Studies on the simulation model for wheat phenology[J]. Acta Agronomica Sinica, 1997, 23(4): 418-424. (in Chinese with English abstract) | |
[7] | 方兴义. 基于EPIC模型的农业旱灾风险模糊评估方法[J]. 灾害学, 2020, 35(3): 55-58. |
FANG X Y. Fuzzy evaluation method of agricultural drought risk based on EPIC model[J]. Journal of Catastrophology, 2020, 35(3): 55-58. (in Chinese with English abstract) | |
[8] | 王学春, 王红妮, 黄晶, 等. 基于EPIC模型的四川丘陵区黑麦草生长过程及其土壤水分动态变化模拟[J]. 草业学报, 2017, 26(9): 1-13. |
WANG X C, WANG H N, HUANG J, et al. Simulation of soil moisture dynamics and ryegrass growth in the hilly region of Sichuan Province using the environmental policy integrated climate model[J]. Acta Prataculturae Sinica, 2017, 26(9): 1-13. (in Chinese with English abstract) | |
[9] | 李毅, 张思远, 刘庆祝, 等. 基于DSSAT-CERES-Wheat的黄土高原西部春小麦干旱影响研究[J]. 农业机械学报, 2022, 53(6):338-348. |
LI Y, ZHANG S Y, LIU Q Z, et al. Effects of droughts and meteorology on spring wheat in western loess plateau based on DSSAT-CERES-Wheat model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6):338-348. (in Chinese with English abstract) | |
[10] | KINIRY J R, SANDERSON M A, WILLIAMS J R, et al. Simulating alamo switchgrass with the ALMANAC model[J]. Agronomy Journal, 1996, 88(4): 602-606. |
[11] | 殷新佑. 对预测作物发育的积温法的评价[J]. 作物学报, 1999, 25(4): 474-482. |
YIN X Y. A critical appraisal of thermal time approach for predicting crop development[J]. Acta Agronomica Sinica, 1999, 25(4): 474-482. (in Chinese with English abstract) | |
[12] | 贾慧芬. 作物发育期有效积温累积速度预报方法的研究[J]. 沈阳农业大学学报, 1992, 23(S1): 84-87. |
JIA H F. Forecasting the development period of rice crop according to the accumulation speed of effective temperature[J]. Journal of Shenyang Agricultural University, 1992, 23(S1): 84-87. (in Chinese with English abstract) | |
[13] | 李昊宇, 王建林, 郑昌玲, 等. 气候适宜度在华北冬小麦发育期预报中的应用[J]. 气象, 2012, 38(12): 1554-1559. |
LI H Y, WANG J L, ZHENG C L, et al. The development period prediction of winter wheat based on climatic suitability in North China[J]. Meteorological Monthly, 2012, 38(12): 1554-1559. (in Chinese with English abstract) | |
[14] | LI T, ANGELES O, et al. MARCAIDA M Ⅲ, From ORYZA2000 to ORYZA(v3): an improved simulation model for rice in drought and nitrogen-deficient environments[J]. Agricultural and Forest Meteorology, 2017, 237/238: 246-256. |
[15] | VAN OORT P A J, ZHANG T Y, DE VRIES M E, et al. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.)[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1545-1555. |
[16] | 乌玲瑛, 徐奂, 蔡喨喨, 等. 基于机器学习的水稻发育期预测模型构建[J]. 扬州大学学报(农业与生命科学版), 2012, 33(3): 44-50. |
WU L Y, XU H, CAI L L, et al. A predicting model based on machine learning for rice development[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2012, 33(3): 44-50. (in Chinese with English abstract) | |
[17] | 梁帆, 杨莉莉, 崔世钢, 等. 基于神经网络的油菜成熟度等级视觉检测方法[J]. 江苏农业科学, 2015, 43(8): 403-405. |
LIANG F, YANG L L, CUI S G, et al. Visual detection method of rapeseed maturity grade based on neural network[J]. Jiangsu Agricultural Sciences, 2015, 43(8): 403-405. (in Chinese) | |
[18] | 张久权, 张凌霄, 张明华, 等. 应用神经网络和统计模型预测大豆生长发育阶段[J]. 作物学报, 2009, 35(2): 341-347. |
ZHANG J Q, ZHANG L X, ZHANG M H, et al. Prediction of soybean growth and development stages using artificial neural network and statistical models[J]. Acta Agronomica Sinica, 2009, 35(2): 341-347. (in Chinese with English abstract) | |
[19] | ELIZONDO D A, MCCLENDON R W, HOOGENBOOM G. Neural network models for predicting flowering and physiological maturity of soybean[J]. Transactions of the ASAE, 1994, 37(3): 981-988. |
[20] | 唐建军, 王映龙, 彭莹琼, 等. BP神经网络在水稻病虫害诊断中的应用研究[J]. 安徽农业科学, 2010, 38(1): 199-200. |
TANG J J, WANG Y L, PENG Y Q, et al. Application study on BP neural network in the diagnosis of rice diseases and pests[J]. Journal of Anhui Agricultural Sciences, 2010, 38(1): 199-200. (in Chinese with English abstract) | |
[21] | 高丹, 迟道才, 王铁良. 基于MATLAB神经网络的水稻需水量的预报模型[J]. 沈阳农业大学学报, 2005, 36(5): 599-602. |
GAO D, CHI D C, WANG T L. Predictive model of water requirement of paddy base on MATLAB neural network[J]. Journal of Shenyang Agricultural University, 2005, 36(5): 599-602. (in Chinese with English abstract) | |
[22] | 郑重, 马富裕, 李江全, 等. 基于BP神经网络的农田蒸散量预报模型[J]. 水利学报, 2008, 39(2): 230-234. |
ZHENG Z, MA F Y, LI J Q, et al. Forecast model for field evaportranspiration based on BP ANN[J]. Journal of Hydraulic Engineering, 2008, 39(2): 230-234. (in Chinese with English abstract) | |
[23] | 李珊, 马丽丽, 贺超兴, 等. 温室栽培基质耗水量与环境因子相关性的研究[J]. 中国农学通报, 2011, 27(8): 144-149. |
LI S, MA L L, HE C X, et al. Simulation study between water evaporation of cultivation substrate and environmental factor of greenhouse[J]. Chinese Agricultural Science Bulletin, 2011, 27(8): 144-149. (in Chinese with English abstract) | |
[24] | 陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013: 156-191. |
[25] | 张德丰, 赵红. MATLAB神经网络应用设计[M]. 北京: 机械工业出版社, 2009: 83-91. |
[26] | 江梦圆. 干旱胁迫对冬小麦生长的影响机理及模拟研究[D]. 南京: 南京信息工程大学, 2020. |
JIANG M Y. The study of influencing mechanism of drought stress on winter wheat growth and its model simulation[D]. Nanjing: Nanjing University of Information Science & Technology, 2020. (in Chinese with English abstract) | |
[27] | 王钧, 李广, 聂志刚, 等. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究[J]. 干旱区地理, 2021, 44(2): 494-506. |
WANG J, LI G, NIE Z G, et al. Simulation study of response of spring wheat yield to drought stress in the Loess Plateau of central Gansu[J]. Arid Land Geography, 2021, 44(2): 494-506. (in Chinese with English abstract) | |
[28] | 王婧瑄, 郭建平, 李蕊. 春玉米积温稳定性及在发育期预报中的应用[J]. 应用气象学报, 2019, 30(5): 577-585. |
WANG J X, GUO J P, LI R. Accumulated temperature stability of spring maize and its application to growth period forecast[J]. Journal of Applied Meteorological Science, 2019, 30(5): 577-585. (in Chinese with English abstract) | |
[29] | 高亮之, 金之庆, 李林. 中国不同类型水稻生育期的气象生态模式及其应用[J]. 农业气象, 1982, 3(2): 1-8. |
GAO L Z, JIN Z Q, LI L. Meteorological ecological models of different rice growth stages in China and their application[J]. Chinese Journal of Agrometeorology, 1982, 3(2): 1-8. (in Chinese) | |
[30] | 冯秀藻, 陶炳炎. 农业气象学原理[M]. 北京: 气象出版社, 1991: 95-116. |
[31] | RITCHIE J T, ALOCILJA E C, SINGH U, et a1. IBSNAT and the CERES Model[M]// IRRI. Weather and rice. Manila: IRRI, 1987: 271-281. |
[32] | BOUMAN B A M, KROPFF M J, TUONG T P, et al. ORYZA2000: modeling lowland rice[R]. Los Baňos, Philippines: IRRI, 2001: 235. |
[33] | GAO L Z, JIN Z Q, HUANG Y, et al. Rice clock model: a computer model to simulate rice development[J]. Agricultural and Forest Meteorology, 1992, 60(1/2): 1-16. |
[34] | 孟亚利, 曹卫星, 周治国, 等. 基于生长过程的水稻阶段发育与物候期模拟模型[J]. 中国农业科学, 2003, 36(11): 1362-1367. |
MENG Y L, CAO W X, ZHOU Z G, et al. A process-based model for simulating phasic development and phenology in rice[J]. Scientia Agricultura Sinica, 2003, 36(11): 1362-1367. (in Chinese with English abstract) | |
[35] | 康西言, 董航宇, 姚树然. 基于气象因子的冬小麦发育期预报模型[J]. 中国农业气象, 2015, 36(4): 465-471. |
KANG X Y, DONG H Y, YAO S R. Prediction model of winter wheat development stages based on meteorological factors[J]. Chinese Journal of Agrometeorology, 2015, 36(4): 465-471. (in Chinese with English abstract) | |
[36] | 熊伟, 林而达, 杨婕, 等. 作物模型区域应用两种参数校准方法的比较[J]. 生态学报, 2008, 28(5): 2140-2147. |
XIONG W, LIN E D, YANG J, et al. Comparion of two calibration approaches for regional simulation of crop model[J]. Acta Ecologica Sinica, 2008, 28(5): 2140-2147. (in Chinese with English abstract) | |
[37] | 熊伟. 站点CERES-Rice模型区域应用效果和误差来源[J]. 生态学报, 2009, 29(4): 2003-2009. |
XIONG W. The performance of regional simulation of CERES-Rice model and its uncertainties[J]. Acta Ecologica Sinica, 2009, 29(4): 2003-2009. (in Chinese with English abstract) |
[1] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[2] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
[3] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
[4] | YANG Shengling, HUANG Xingcheng, LI Yu, LIU Yanling, ZHANG Yarong, ZHANG Yan, ZHANG Wen’an, JIANG Taiming. Effects of long-term organic and inorganic fertilizer application on growth, dry matter accumulation and yield of rice [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1815-1825. |
[5] | YANG Hailong, WANG Hui, LEI Jinchao, CAI Jinyang. Analysis and evaluation of phenotypic diversities of early indica rice germplasm resources in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1571-1581. |
[6] | HUANG Feng, XING Jianping, FU Shaohuai, PAN Pan, WU Lin, LIU Beibei, CHEN Miao. Effects of different safe utilization technologies on cadmium reduction in rice-vegetable rotation system in northern Hainan, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1725-1733. |
[7] | HUANG Donghui, ZHONG Peng, WANG Jianli, HU Yunlong, WANG Zhigang. Effects of environmental conditions on biofilm formation of Bacillus altitudinis LZP02 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1466-1473. |
[8] | LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501. |
[9] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[10] | TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257. |
[11] | ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267. |
[12] | YE Ying, ZHAO Kaocheng, MA Jun, ZHU Ke, ZHUANG Hengyang. Effects of sowing date and nitrogen application rate on grain yield and nitrogen utilization of rice variety Nanjing 9108 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 879-886. |
[13] | WANG Baojun, CHENG Wangda, SHEN Yaqiang, CHEN Zhaogui, PENG Yuhui, ZHU Jiawei, HUANG Jiapin, ZHANG Hongmei. Selection and comprehensive evaluation of special glutinous rice varieties for dumpling in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2583-2593. |
[14] | LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699. |
[15] | GAO Xueping, ZHANG Yuhan, ZHANG Mengling, LIAO Wenmei. Analysis of the impact of use of internet information technology on agricultural productivity: a case study of rice farmers in Jiangxi Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2809-2822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||