Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (8): 1725-1733.DOI: 10.3969/j.issn.1004-1524.2022.08.16
• Environmental Science • Previous Articles Next Articles
HUANG Feng1(), XING Jianping1, FU Shaohuai1, PAN Pan2,3, WU Lin2,3, LIU Beibei2,3, CHEN Miao2,3,*(
)
Received:
2021-08-08
Online:
2022-08-25
Published:
2022-08-26
Contact:
CHEN Miao
CLC Number:
HUANG Feng, XING Jianping, FU Shaohuai, PAN Pan, WU Lin, LIU Beibei, CHEN Miao. Effects of different safe utilization technologies on cadmium reduction in rice-vegetable rotation system in northern Hainan, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1725-1733.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.08.16
检测指标 Indexes | 最小值 Minimum | 最大值 Maximum | 均值 Mean |
---|---|---|---|
pH | 4.9 | 6.1 | 5.4 |
OM/(g·kg-1) | 12.5 | 32.5 | 20.5 |
CEC/(cmol+.kg-1) | 2.4 | 7.9 | 5.7 |
Cd/(mg·kg-1) | 0.01 | 0.85 | 0.53 |
As/(mg·kg-1) | 3.9 | 13.8 | 10.8 |
Ni/(mg·kg-1) | 21.8 | 42.0 | 29.5 |
Cr/(mg·kg-1) | 46.5 | 74.8 | 59.2 |
Pb/(mg·kg-1) | 14.9 | 43.2 | 34.8 |
ACd/(mg·kg-1) | 0.01 | 0.54 | 0.37 |
Table 1 Basic physiochemical properties and content of some heavy metal elements of test soil in study area
检测指标 Indexes | 最小值 Minimum | 最大值 Maximum | 均值 Mean |
---|---|---|---|
pH | 4.9 | 6.1 | 5.4 |
OM/(g·kg-1) | 12.5 | 32.5 | 20.5 |
CEC/(cmol+.kg-1) | 2.4 | 7.9 | 5.7 |
Cd/(mg·kg-1) | 0.01 | 0.85 | 0.53 |
As/(mg·kg-1) | 3.9 | 13.8 | 10.8 |
Ni/(mg·kg-1) | 21.8 | 42.0 | 29.5 |
Cr/(mg·kg-1) | 46.5 | 74.8 | 59.2 |
Pb/(mg·kg-1) | 14.9 | 43.2 | 34.8 |
ACd/(mg·kg-1) | 0.01 | 0.54 | 0.37 |
钝化剂 Passivator | pH | OM/% | Cd/(mg· kg-1) |
---|---|---|---|
石灰Lime | 9.3 | — | 2.73 |
生物炭Biochar | 8.4 | 21.3 | 0.35 |
蚯蚓粪Vermicompost | 7.4 | 20.8 | 1.07 |
磷矿粉Phosphate rock powder | 9.5 | — | 1.5 |
活化磷矿粉 | 9.6 | — | 2.43 |
Activated phosphate rock powder | |||
竹炭有机肥Bamboo organic fertilizer | 6.6 | 16.3 | 1.19 |
腐殖酸肥Humic acid fertilizer | 9.5 | — | 1.08 |
零价铁Zero-valent iron | 9.3 | — | — |
Table 2 pH value and contents of organic matter and total cadmium
钝化剂 Passivator | pH | OM/% | Cd/(mg· kg-1) |
---|---|---|---|
石灰Lime | 9.3 | — | 2.73 |
生物炭Biochar | 8.4 | 21.3 | 0.35 |
蚯蚓粪Vermicompost | 7.4 | 20.8 | 1.07 |
磷矿粉Phosphate rock powder | 9.5 | — | 1.5 |
活化磷矿粉 | 9.6 | — | 2.43 |
Activated phosphate rock powder | |||
竹炭有机肥Bamboo organic fertilizer | 6.6 | 16.3 | 1.19 |
腐殖酸肥Humic acid fertilizer | 9.5 | — | 1.08 |
零价铁Zero-valent iron | 9.3 | — | — |
处理 Treatment | 辣椒Pepper | 水稻Rice | ||
---|---|---|---|---|
镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | 镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | |
T1 | 0.352 ± 0.014 a | — | 0.837 ± 0.041 a | — |
T2 | 0.135 ± 0.011 b | 61.6 | 0.424 ± 0.023 b | 49.4 |
T3 | 0.122 ± 0.010 bc | 65.3 | 0.280 ± 0.014 c | 66.6 |
T4 | 0.112 ±0.010 c | 68.2 | 0.267 ± 0.018 c | 68.1 |
T5 | 0.055 ± 0.008 d | 84.4 | 0.247 ± 0.016 c | 70.5 |
T6 | 0.036 ± 0.006 d | 89.8 | 0.097 ± 0.008 d | 88.5 |
T7 | 0.030 ± 0.004 d | 91.5 | 0.072 ± 0.006 d | 91.3 |
Table 3 Effect of different treatments on Cd content in pepper and rice
处理 Treatment | 辣椒Pepper | 水稻Rice | ||
---|---|---|---|---|
镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | 镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | |
T1 | 0.352 ± 0.014 a | — | 0.837 ± 0.041 a | — |
T2 | 0.135 ± 0.011 b | 61.6 | 0.424 ± 0.023 b | 49.4 |
T3 | 0.122 ± 0.010 bc | 65.3 | 0.280 ± 0.014 c | 66.6 |
T4 | 0.112 ±0.010 c | 68.2 | 0.267 ± 0.018 c | 68.1 |
T5 | 0.055 ± 0.008 d | 84.4 | 0.247 ± 0.016 c | 70.5 |
T6 | 0.036 ± 0.006 d | 89.8 | 0.097 ± 0.008 d | 88.5 |
T7 | 0.030 ± 0.004 d | 91.5 | 0.072 ± 0.006 d | 91.3 |
处理 Treatment | 土壤Soil | 水稻Rice | ||||||
---|---|---|---|---|---|---|---|---|
pH | CEC/ (cmol·kg-1) | OM/ (g·kg-1) | Cd/ (mg·kg-1) | ACd/ (mg·kg-1) | Cd/ (mg·kg-1) | BCF | 降镉率 Cd reduction rate/% | |
S1 | 5.5 d | 5.96 c | 18.8 b | 0.353 a | 0.081 1 a | 0.539 a | 1.527 a | — |
S2 | 6.9 a | 6.29 b | 19.4 b | 0.342 a | 0.012 4 d | 0.332 b | 0.971 b | 38.3 |
S3 | 6.0 c | 6.69 b | 26.7 a | 0.338 a | 0.079 9 b | 0.189 c | 0.559 c | 64.9 |
S4 | 6.6 bc | 7.73 a | 20.7 ab | 0.364 a | 0.064 0 b | 0.349 b | 0.959 b | 35.2 |
S5 | 6.5 bc | 8.81 a | 17.3 b | 0.319 a | 0.069 8 b | 0.208 c | 0.652 c | 61.4 |
S6 | 6.3 bc | 7.34 a | 19.5 ab | 0.369 a | 0.059 0 c | 0.368 b | 0.997 b | 31.7 |
S7 | 6.7 b | 6.60 b | 19.3 ab | 0.350 a | 0.059 8 c | 0.379 b | 1.083 b | 29.7 |
S8 | 6.8 a | 7.45 a | 20.1 ab | 0.333 a | 0.045 5 c | 0.171 d | 0.514 d | 68.3 |
S9 | 6.5 bc | 6.22 b | 19.9 ab | 0.357 a | 0.045 0 c | 0.159 d | 0.445 d | 70.4 |
S10 | 6.7 a | 8.23 a | 20.9 ab | 0.336 a | 0.031 9 c | 0.124 d | 0.369 d | 77.0 |
Table 4 Effect of different treatments on soil indexes and Cd content in rice
处理 Treatment | 土壤Soil | 水稻Rice | ||||||
---|---|---|---|---|---|---|---|---|
pH | CEC/ (cmol·kg-1) | OM/ (g·kg-1) | Cd/ (mg·kg-1) | ACd/ (mg·kg-1) | Cd/ (mg·kg-1) | BCF | 降镉率 Cd reduction rate/% | |
S1 | 5.5 d | 5.96 c | 18.8 b | 0.353 a | 0.081 1 a | 0.539 a | 1.527 a | — |
S2 | 6.9 a | 6.29 b | 19.4 b | 0.342 a | 0.012 4 d | 0.332 b | 0.971 b | 38.3 |
S3 | 6.0 c | 6.69 b | 26.7 a | 0.338 a | 0.079 9 b | 0.189 c | 0.559 c | 64.9 |
S4 | 6.6 bc | 7.73 a | 20.7 ab | 0.364 a | 0.064 0 b | 0.349 b | 0.959 b | 35.2 |
S5 | 6.5 bc | 8.81 a | 17.3 b | 0.319 a | 0.069 8 b | 0.208 c | 0.652 c | 61.4 |
S6 | 6.3 bc | 7.34 a | 19.5 ab | 0.369 a | 0.059 0 c | 0.368 b | 0.997 b | 31.7 |
S7 | 6.7 b | 6.60 b | 19.3 ab | 0.350 a | 0.059 8 c | 0.379 b | 1.083 b | 29.7 |
S8 | 6.8 a | 7.45 a | 20.1 ab | 0.333 a | 0.045 5 c | 0.171 d | 0.514 d | 68.3 |
S9 | 6.5 bc | 6.22 b | 19.9 ab | 0.357 a | 0.045 0 c | 0.159 d | 0.445 d | 70.4 |
S10 | 6.7 a | 8.23 a | 20.9 ab | 0.336 a | 0.031 9 c | 0.124 d | 0.369 d | 77.0 |
[1] | 梁捷, 孙宏飞, 葛成军, 等. 海南省主要农作物主产区土壤重金属含量分布及其健康风险评价[J]. 热带作物学报, 2019, 40(11): 2285-2293. |
LIANG J, SUN H F, GE C J, et al. Distribution of heavy metal contents in soils of main crop production areas in Hainan and the health risk assessment[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2285-2293. (in Chinese with English abstract) | |
[2] | 李佳桐. 琼北土壤高背景值区域重金属空间分布及健康风险评价[D]. 海口: 海南大学, 2018. |
LI J T. Spatial distribution characteristics and health risk assessment of heavy metal in soils in the north of Hainan Province with high background value[D]. Haikou: Hainan University, 2018. (in Chinese with English abstract) | |
[3] |
GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460.
DOI URL |
[4] | WAN X M, LEI M, CHEN T B. Review on remediation technologies for arsenic-contaminated soil[J]. Frontiers of Environmental Science & Engineering, 2019, 14(2): 1-14. |
[5] |
UDDIN M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438-462.
DOI URL |
[6] |
ZENG G M, WAN J, HUANG D L, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils: a review[J]. Journal of Hazardous Materials, 2017, 339: 354-367.
DOI URL |
[7] | 周于宁. 组合钝化剂对轻中度镉污染农田土壤的钝化效果及其稳定性研究[D]. 杭州: 浙江大学, 2020. |
ZHOU Y N. Study on the immobilization effect and stability of mild and moderate cadmium contaminated farmland soil by combination of passivators[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
[8] | 陈喆, 铁柏清, 雷鸣, 等. 施硅方式对稻米镉阻隔潜力研究[J]. 环境科学, 2014, 35(7): 2762-2770. |
CHEN Z, TIE B Q, LEI M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J]. Environmental Science, 2014, 35(7): 2762-2770. (in Chinese with English abstract) | |
[9] | 徐奕, 李剑睿, 黄青青, 等. 坡缕石钝化与喷施叶面硅肥联合对水稻吸收累积镉效应影响研究[J]. 农业环境科学学报, 2016, 35(9): 1633-1641. |
XU Y, LI J R, HUANG Q Q, et al. Effect of palygorskite immobilization combined with foliar silicon fertilizer application on Cd accumulation in rice[J]. Journal of Agro-Environment Science, 2016, 35(9): 1633-1641. (in Chinese with English abstract) | |
[10] | 冯雪敏. 水稻富集镉砷的关键部位、生育时期及相关元素的研究[D]. 北京: 中国农业科学院, 2017. |
FENG X M. The key parts, important growth stages and related elements in Cd/As accumulation of rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
[11] | 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. |
LUO Y M, TENG Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 145-152. (in Chinese with English abstract) | |
[12] | 林生, 张家玮, 李建宏, 等. 6种海南商品有机肥对Pb(Ⅱ)和Cu(Ⅱ)的复合吸附及解吸[J]. 福建农林大学学报(自然科学版), 2018, 47(1): 97-103. |
LIN S, ZHANG J W, LI J H, et al. Adsorption and desorption of Pb(Ⅱ) and Cu(Ⅱ) by six commercial organic fertilizers from Hainan Province[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(1): 97-103. (in Chinese with English abstract) | |
[13] | 罗春岩, 张家玮, 王雨阳, 等. 不同种类有机肥对土壤铅、铜形态转化的影响[J]. 中国土壤与肥料, 2019(6): 78-85. |
LUO C Y, ZHANG J W, WANG Y Y, et al. Impact of different organic fertilizers on the form and transformation of lead and copper in soil[J]. Soil and Fertilizer Sciences in China, 2019(6): 78-85. (in Chinese with English abstract) | |
[14] | 张婧旻, 李建宏, 洪思诚, 等. 椰纤维生物炭对砖红壤水稻土Pb形态及水稻产量和品质的影响[J]. 生态环境学报, 2019, 28(9): 1886-1892. |
ZHANG J M, LI J H, HONG S C, et al. Effect of coconut fiber-derived biochars amendments on geochemical fractions of Pb in paddy soils and yield and quality of rice[J]. Ecology and Environmental Sciences, 2019, 28(9): 1886-1892. (in Chinese with English abstract) | |
[15] | 刘绪坤, 徐文, 黄一伦, 等. 利用生物炭与石灰钝化(修复)琼北土壤中的铬污染[J]. 海南大学学报(自然科学版), 2020, 38(3): 254-259. |
LIU X K, XU W, HUANG Y L, et al. Biochar and lime passivation remediation of heavy metal chromium pollution in Qiongbei soil[J]. Natural Science Journal of Hainan University, 2020, 38(3): 254-259. (in Chinese with English abstract) | |
[16] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. |
[17] | United States Environmental Protection Agency (USEPA). Integrated risk information system[EB/OL]. [2021-08-08]. http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.show SubstanceList. |
[18] | 环境保护部. 中国人群环境暴露行为模式研究报告:成人卷[M]. 北京: 中国环境出版社, 2013. |
[19] |
CHEN Y, HU W Y, HUANG B, et al. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China[J]. Ecotoxicology and Environmental Safety, 2013, 98: 324-330.
DOI URL |
[20] | 曹胜, 欧阳梦云, 周卫军, 等. 石灰对土壤重金属污染修复的研究进展[J]. 中国农学通报, 2018, 34(26): 109-112. |
CAO S, OUYANG M Y, ZHOU W J, et al. Remediation of heavy metal contaminated soils by lime: a review[J]. Chinese Agricultural Science Bulletin, 2018, 34(26): 109-112. (in Chinese with English abstract) | |
[21] | HAMID Y, TANG L, HUSSAIN B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707: 136121. |
[22] |
QIN S Y, LIU H E, NIE Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review[J]. Pedosphere, 2020, 30(2): 168-180.
DOI URL |
[23] | 冯敬云, 聂新星, 刘波, 等. 镉污染农田原位钝化修复效果及其机理研究进展[J]. 农业资源与环境学报, 2021, 38(5): 764-777. |
FENG J Y, NIE X X, LIU B, et al. Efficiency of in situ passivation remediation in cadmium-contaminated farmland soil and its mechanism: a review[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 764-777. (in Chinese with English abstract) | |
[24] | YANG J Y, CHEN X, LU W C, et al. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition[J]. Chemosphere, 2020, 258: 127135. |
[25] | 戴青云, 刘代欢, 王德新, 等. 硅对水稻生长的影响及其缓解镉毒害机理研究进展[J]. 中国农学通报, 2020, 36(5): 86-92. |
DAI Q Y, LIU D H, WANG D X, et al. A review on silicon: effect on rice growth and its mechanism of relieving cadmium toxicity[J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 86-92. (in Chinese with English abstract) | |
[26] |
SHI G R, ZHANG Z, LIU C F. Silicon influences cadmium translocation by altering subcellular distribution and chemical forms of cadmium in peanut roots[J]. Archives of Agronomy and Soil Science, 2017, 63(1): 117-123.
DOI URL |
[27] | WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: a review[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111261. |
[28] | LIU B B, HE Z L, LIU R L, et al. Comparative effectiveness of activated dolomite phosphate rock and biochar for immobilizing cadmium and lead in soils[J]. Chemosphere, 2021, 266: 129202. |
[29] | 潘攀, 刘贝贝, 吴琳, 等. 蚯蚓粪与零价铁、磷矿粉对酸性土壤改良和重金属风险控制研究[J]. 安全与环境学报, 2020, 20(4): 1549-1557. |
PAN P, LIU B B, WU L, et al. Influential effects of vermicompost, zero-valentiron and phosphate rock on properties and heavy metal risks of acid soil[J]. Journal of Safety and Environment, 2020, 20(4): 1549-1557. (in Chinese with English abstract) | |
[30] |
QIAO J T, LIU T X, WANG X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere, 2018, 195: 260-271.
DOI URL |
[1] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[2] | LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501. |
[3] | TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257. |
[4] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[5] | WANG Can, FU Tianling, GONG Sitong, LOU Fei, ZHOU Kai, DAI Liangyu, LIU Jing, LIN Dasong, HE Tengbing. Effects of foliar control agents on cadmium enrichment characteristics of rice in karst area in central Guizhou [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1710-1719. |
[6] | LIU Ru, DONG Changru, ZHANG Yiwen, QU Minghui, ZHANG Wei, SA Haiyang, CHEN Haiyan, YE Wenling, FAN Ting. Growth-promoting characteristics of Aspergillus niger TL-F2 and its effect on seed germination and cadmium content in seedlings of ryegrass under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 326-334. |
[7] | DONG Aiqin, LI Jianguo, YANG Tao, CHEN Yuanhua, XU Changxu, WAN Hui, PENG Zhiping, XIE Jie. Effects of different sulfate soaking agents on seed germination and cadmium uptake of rice seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2213-2223. |
[8] | GU Jiancheng, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, DING Nengfei, LI Hua, LI Ningyu. Effects of iron plaque in root surface on cadmium uptake of rice [J]. , 2020, 32(6): 963-970. |
[9] | ZHU Senlin, MEI Zhong, XING Chenghua. Inhibition of phosphorus deficiency on cadmium accumulation in Arabidopsis thaliana [J]. , 2020, 32(5): 804-809. |
[10] | WANG Xiaoming, CHEN Ailing, DONG Lu, SHI Yujun, ZHENG Liuchang, ZHAO Lianhui, ZHANG Ruiqi, ZHANG Fenqin. Cadmium tolerance mechanism of Solanum nigrum L. based on components and enzyme activity changes in apoplast [J]. , 2020, 32(5): 816-823. |
[11] | XIE Jie, DONG Aiqin, XU Changxu, SU Jinping, FAN Fang, HU Meirong, LIU Jia. Impact of long-term returning of Astragalus sinicus L. on content and forms of Cd in different depths of paddy soils [J]. , 2019, 31(12): 2084-2094. |
[12] | JIANG Wu, WU Zhigang, CHEN Songlin, TAO Zhengming. Kinetic analysis and antioxidant activity of Dendrobium officinale leaves under cadmium stress [J]. , 2017, 29(9): 1421-1429. |
[13] | GUO Xiao\|jing1,2, HU Cheng\|xiao1,2, ZHAO Xiao\|hu1,2,*, TAN Qi\|ling1,2, SUN Xue\|cheng1,2. Difference of cadmium uptake and accumulation in vegetables under different planting patterns#br# [J]. , 2015, 27(8): 1387-. |
[14] | GUO Jiang\|bo;TANG Bing;WANG Jian\|ying;CAI Lu;XIN Cui\|hua*. Influence of cadmium stress on physiological indexes in tobacco [J]. , 2013, 25(6): 0-1283. |
[15] | WANG Linyou;ZHU Chaona;WANG Jianjun;ZHANG Lixia;JIN Qingsheng;SHI Chunhai;* . Screening for rice (Oryza sativa L.) genotyeps with lower Cd, Pb and As contents [J]. , 2012, 24(1): 0-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||