Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 622-633.DOI: 10.3969/j.issn.1004-1524.20240087
• Food Science • Previous Articles Next Articles
HAN Yanchao1(), CHEN Huizhi1,2, NIU Ben1,2, ZHANG Xiaoshuan3, HAN Shuren4, WANG Xiaoyan1, WANG Guannan1, LIU Ruiling2,*(
), GAO Haiyan1,2,*(
)
Received:
2024-01-21
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
HAN Yanchao, CHEN Huizhi, NIU Ben, ZHANG Xiaoshuan, HAN Shuren, WANG Xiaoyan, WANG Guannan, LIU Ruiling, GAO Haiyan. Effect of vibration stress on anthocyanin metabolism and related gene expression in blueberry[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 622-633.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240087
引物名称 Primer name | 上游引物序列 Sequence of forward primer(5'-3') | 下游引物序列 Sequence of reverse primer(5'-3') |
---|---|---|
VcPAL1 | TCATGTCCAAAGTGCTGAGC | AACCAAGTGGCACTCATGAG |
VcPAL2 | GTTCGCATCAACACCCTCCT | GGCCCTACCGCTTTTGAGTT |
VcCHI1 | CAGGCAACTCCATTCTTTTC | TTCTCTATGACTGCATTCCC |
VcCHI2 | GCCCTTATTTCTGCTCCAGTTG | CTCTAGCTGCACACCGTACT |
VcDFR1 | AACCTAACGCTGTGGAAGGC | ATACTCCGACGCAACCTTCA |
VcDFR2 | AGAAAGCAGCATGGGAAGCA | GCTTGGTGGGAATGTAGGCA |
VcDFR3 | CGAGCAACCGTTCGCGATCCA | AGGTCCGCCTTCCACAGCGT |
VcUFGT | AGTTTGCTTTGAAGGCTGTTG | ATGTGCTGGTGTGCATTTG |
VcPOD1 | ACGTTGCTTCAAAATGTGGCTT | TCCTTGAGTTTTGTACTTCTCGTAG |
VcPOD2 | TGCTGGTGTTGTTGCAGTTG | CGCCCTTCCTTGGGAGAAAT |
VcPOD3 | CTGGAGCCCATCAAGGAACA | TCCATGGGACTCTGGATGGA |
VcPPO1 | GCCGACTTTTAAGCCACGGA | GCTTGTCAGGGTGAAGGTGA |
VcPPO2 | GAGATCCTCCAACGACTCACA | AGCAGGTTTCAGTGCCCAA |
VcGAPDH | ACTACCATCCACTCTATCACCG | AACACCTTACCAACAGCCTTG |
Table 1 Fluorescent quantitative PCR primer sequence
引物名称 Primer name | 上游引物序列 Sequence of forward primer(5'-3') | 下游引物序列 Sequence of reverse primer(5'-3') |
---|---|---|
VcPAL1 | TCATGTCCAAAGTGCTGAGC | AACCAAGTGGCACTCATGAG |
VcPAL2 | GTTCGCATCAACACCCTCCT | GGCCCTACCGCTTTTGAGTT |
VcCHI1 | CAGGCAACTCCATTCTTTTC | TTCTCTATGACTGCATTCCC |
VcCHI2 | GCCCTTATTTCTGCTCCAGTTG | CTCTAGCTGCACACCGTACT |
VcDFR1 | AACCTAACGCTGTGGAAGGC | ATACTCCGACGCAACCTTCA |
VcDFR2 | AGAAAGCAGCATGGGAAGCA | GCTTGGTGGGAATGTAGGCA |
VcDFR3 | CGAGCAACCGTTCGCGATCCA | AGGTCCGCCTTCCACAGCGT |
VcUFGT | AGTTTGCTTTGAAGGCTGTTG | ATGTGCTGGTGTGCATTTG |
VcPOD1 | ACGTTGCTTCAAAATGTGGCTT | TCCTTGAGTTTTGTACTTCTCGTAG |
VcPOD2 | TGCTGGTGTTGTTGCAGTTG | CGCCCTTCCTTGGGAGAAAT |
VcPOD3 | CTGGAGCCCATCAAGGAACA | TCCATGGGACTCTGGATGGA |
VcPPO1 | GCCGACTTTTAAGCCACGGA | GCTTGTCAGGGTGAAGGTGA |
VcPPO2 | GAGATCCTCCAACGACTCACA | AGCAGGTTTCAGTGCCCAA |
VcGAPDH | ACTACCATCCACTCTATCACCG | AACACCTTACCAACAGCCTTG |
花色苷组分 Anthocyanin components | 0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | |
飞燕草素-3-半乳糖苷 Delphinidin-3-galactoside | 644.68 ±6.78 | 754.65 ±21.41* | 649.76 ±22.09 | 827.79 ±9.08* | 646.84 ±38.42 | 881.23 ±38.42* | 721.09 ±2.70 | 717.34 ±18.55 | 909 ±9.63 | 562.41 ±20.76* | 919.85 ±22.46 | 473.84 ±17.55* | 508.62 ±38.78 | 303.85 ±32.33* |
矢车菊素-3-半乳糖苷 Cyanin-3-galactoside | 362.81 ±15.10 | 585.98 ±22.22* | 372.35 ±11.89 | 649.50 ±15.58* | 380.73 ±18.30 | 693.26 ±15.22* | 391.67 ±12.80 | 571.28 ±25.91* | 699.28 ±5.80 | 416.17 ±12.63* | 494.29 ±23.58 | 304.06 ±7.57* | 188.51 ±18.78 | 122.16 ±2.96* |
飞燕草素-3-阿拉伯糖苷 Delphinidin-3-arabinose glycoside | 376.21 ±4.53 | 650.37 ±10.29* | 410.91 ±14.91 | 517.54 ±19.38* | 456.91 ±9.40 | 539.39 ±8.58* | 569.62 ±15.54 | 473.08 ±13.22* | 612.00 ±13.64 | 370.01 ±19.06* | 647.95 ±25.27 | 258.88 ±13.46* | 313.97 ±7.50 | 119.43 ±18.55* |
矮牵牛素-3-半乳糖苷 Petunionin-3-galactoside | 41.35 ±2.21 | 47.58 ±1.49* | 46.95 ±4.58 | 54.51 ±2.52* | 52.01 ±2.25 | 68.03 ±2.32* | 58.53 ±2.69 | 42.68 ±4.19* | 67.00 ±5.85 | 46.52 ±1.62* | 51.29 ±5.42 | 40.52 ±1.69* | 41.17 ±1.19 | 29.41 ±1.41* |
矮牵牛素-3-葡萄糖苷 Petunionin-3-glucoside | 67.11 ±4.66 | 82.82 ±12.23 | 71.22 ±6.19 | 92.63 ±11.53* | 75.35 ±6.53 | 141.45 ±4.44* | 116.59 ±9.60 | 79.17 ±9.75* | 129.36 ±5.51 | 64.73 ±5.10* | 100.67 ±8.54 | 49.39 ±6.57* | 91.01 ±9.45 | 35.66 ±7.12* |
芍药素-3-葡萄糖苷 Paeoniflorin-3-glucoside | 7.95 ±1.50 | 14.99 ±1.26* | 9.10 ±1.42 | 19.93 ±1.48* | 8.36 ±3.78 | 25.66 ±0.64* | 10.68 ±1.13 | 17.73 ±1.22* | 12.58 ±1.73 | 9.76 ±0.86* | 18.75 ±2.20 | 5.51 ±0.64* | 22.25 ±12.29 | 1.78 ±0.38* |
矮牵牛素-3-阿拉伯糖苷 Petunionin-3-arabinose glycoside | 62.76 ±8.64 | 97.03 ±8.33* | 107.17 ±8.73 | 102.73 ±2.02 | 119.68 ±4.61 | 135.12 ±10.81 | 144.28 ±2.73 | 97.43 ±3.81* | 99.20 ±5.61 | 67.28 ±3.84* | 55.45 ±6.33 | 38.42 ±6.48* | 37.96 ±5.71 | 21.56 ±3.01* |
锦葵素-3-半乳糖苷 Malvacin-3-galactoside | 817 ±27.81 | 962.59 ±34.18* | 851.76 ±11.51 | 856.38 ±26.93* | 912.44 ±14.96 | 774.60 ±24.83* | 932.58 ±16.85 | 599.27 ±6.50* | 714.22 ±79.10 | 534.08 ±34.81 | 534.53 ±23.99 | 365.28 ±27.98* | 414.20 ±16.71 | 189.87 ±24.71* |
锦葵素-3-葡萄糖苷 Malvacin-3-glucoside | 36.26 ±2.54 | 39.03 ±2.02 | 37.26 ±1.28 | 38.27 ±0.95 | 41.26 ±1.81 | 44.55 ±2.50 | 41.44 ±0.80 | 35.36 ±1.38* | 36.83 ±2.40 | 33.26 ±1.75 | 46.79 ±1.59 | 37.40 ±2.69* | 31.97 ±1.55 | 28.06 ±2.61* |
锦葵素-3-阿拉伯糖苷 Malvacin-3-arabinose glycoside | 5 246.72 ±503.30 | 6 166.53 ±179.92* | 5 289.86 ±220.22 | 7 276.47 ±286.78* | 6 930.70 ±142.71 | 10 746.69 ±133.75* | 8 313.87 ±377.03 | 7 740.23 ±291.46* | 8 719.88 ±365.39 | 5 296.44 ±22.67* | 6 282.75 ±75.21 | 3 788.40 ±358.62* | 2 717.32 ±128.54 | 2 117.73 ±251.78* |
Table 2 Effect of vibration stress on anthocyanin components of blueberry μg·g-1
花色苷组分 Anthocyanin components | 0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | 0 h | 18 h | |
飞燕草素-3-半乳糖苷 Delphinidin-3-galactoside | 644.68 ±6.78 | 754.65 ±21.41* | 649.76 ±22.09 | 827.79 ±9.08* | 646.84 ±38.42 | 881.23 ±38.42* | 721.09 ±2.70 | 717.34 ±18.55 | 909 ±9.63 | 562.41 ±20.76* | 919.85 ±22.46 | 473.84 ±17.55* | 508.62 ±38.78 | 303.85 ±32.33* |
矢车菊素-3-半乳糖苷 Cyanin-3-galactoside | 362.81 ±15.10 | 585.98 ±22.22* | 372.35 ±11.89 | 649.50 ±15.58* | 380.73 ±18.30 | 693.26 ±15.22* | 391.67 ±12.80 | 571.28 ±25.91* | 699.28 ±5.80 | 416.17 ±12.63* | 494.29 ±23.58 | 304.06 ±7.57* | 188.51 ±18.78 | 122.16 ±2.96* |
飞燕草素-3-阿拉伯糖苷 Delphinidin-3-arabinose glycoside | 376.21 ±4.53 | 650.37 ±10.29* | 410.91 ±14.91 | 517.54 ±19.38* | 456.91 ±9.40 | 539.39 ±8.58* | 569.62 ±15.54 | 473.08 ±13.22* | 612.00 ±13.64 | 370.01 ±19.06* | 647.95 ±25.27 | 258.88 ±13.46* | 313.97 ±7.50 | 119.43 ±18.55* |
矮牵牛素-3-半乳糖苷 Petunionin-3-galactoside | 41.35 ±2.21 | 47.58 ±1.49* | 46.95 ±4.58 | 54.51 ±2.52* | 52.01 ±2.25 | 68.03 ±2.32* | 58.53 ±2.69 | 42.68 ±4.19* | 67.00 ±5.85 | 46.52 ±1.62* | 51.29 ±5.42 | 40.52 ±1.69* | 41.17 ±1.19 | 29.41 ±1.41* |
矮牵牛素-3-葡萄糖苷 Petunionin-3-glucoside | 67.11 ±4.66 | 82.82 ±12.23 | 71.22 ±6.19 | 92.63 ±11.53* | 75.35 ±6.53 | 141.45 ±4.44* | 116.59 ±9.60 | 79.17 ±9.75* | 129.36 ±5.51 | 64.73 ±5.10* | 100.67 ±8.54 | 49.39 ±6.57* | 91.01 ±9.45 | 35.66 ±7.12* |
芍药素-3-葡萄糖苷 Paeoniflorin-3-glucoside | 7.95 ±1.50 | 14.99 ±1.26* | 9.10 ±1.42 | 19.93 ±1.48* | 8.36 ±3.78 | 25.66 ±0.64* | 10.68 ±1.13 | 17.73 ±1.22* | 12.58 ±1.73 | 9.76 ±0.86* | 18.75 ±2.20 | 5.51 ±0.64* | 22.25 ±12.29 | 1.78 ±0.38* |
矮牵牛素-3-阿拉伯糖苷 Petunionin-3-arabinose glycoside | 62.76 ±8.64 | 97.03 ±8.33* | 107.17 ±8.73 | 102.73 ±2.02 | 119.68 ±4.61 | 135.12 ±10.81 | 144.28 ±2.73 | 97.43 ±3.81* | 99.20 ±5.61 | 67.28 ±3.84* | 55.45 ±6.33 | 38.42 ±6.48* | 37.96 ±5.71 | 21.56 ±3.01* |
锦葵素-3-半乳糖苷 Malvacin-3-galactoside | 817 ±27.81 | 962.59 ±34.18* | 851.76 ±11.51 | 856.38 ±26.93* | 912.44 ±14.96 | 774.60 ±24.83* | 932.58 ±16.85 | 599.27 ±6.50* | 714.22 ±79.10 | 534.08 ±34.81 | 534.53 ±23.99 | 365.28 ±27.98* | 414.20 ±16.71 | 189.87 ±24.71* |
锦葵素-3-葡萄糖苷 Malvacin-3-glucoside | 36.26 ±2.54 | 39.03 ±2.02 | 37.26 ±1.28 | 38.27 ±0.95 | 41.26 ±1.81 | 44.55 ±2.50 | 41.44 ±0.80 | 35.36 ±1.38* | 36.83 ±2.40 | 33.26 ±1.75 | 46.79 ±1.59 | 37.40 ±2.69* | 31.97 ±1.55 | 28.06 ±2.61* |
锦葵素-3-阿拉伯糖苷 Malvacin-3-arabinose glycoside | 5 246.72 ±503.30 | 6 166.53 ±179.92* | 5 289.86 ±220.22 | 7 276.47 ±286.78* | 6 930.70 ±142.71 | 10 746.69 ±133.75* | 8 313.87 ±377.03 | 7 740.23 ±291.46* | 8 719.88 ±365.39 | 5 296.44 ±22.67* | 6 282.75 ±75.21 | 3 788.40 ±358.62* | 2 717.32 ±128.54 | 2 117.73 ±251.78* |
Fig.2 Effect of vibration stress on anthocyanin synthesis related enzymes activity of blueberry * or ** represents the significant (P<0.05) or very significant(P<0.01) difference compared with the control. The same as below.
[1] | 胡雅馨, 李京, 惠伯棣. 蓝莓果实中主要营养及花青素成分的研究[J]. 食品科学, 2006, 27(10): 600-603. |
HU Y X, LI J, HUI B D. Study on major nutrition and anthocyanins of blueberry[J]. Food Science, 2006, 27(10): 600-603. (in Chinese with English abstract) | |
[2] | 张丽萍, 刘瑞玲, 韩延超, 等. 蓝莓表皮蜡质组分对果实采后抗病性的影响[J]. 中国食品学报, 2021, 21(12): 205-213. |
ZHANG L P, LIU R L, HAN Y C, et al. Effects of cuticular wax on disease resistance of postharvest blueberry[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 205-213. (in Chinese) | |
[3] | 孙文丽, 郜海燕, 韩延超, 等. EPE减振包装对蓝莓贮藏品质的影响[J]. 中国食品学报, 2020, 20(10): 232-239. |
SUN W L, GAO H Y, HAN Y C, et al. Effects of EPE vibration-damping packaging on the storage quality of blueberry[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(10): 232-239. (in Chinese) | |
[4] | 邱雪. ‘红阳’猕猴桃果实花色苷合成降解相关酶的研究[D]. 成都: 四川农业大学, 2019. |
QIU X. Studies on enzymes related to anthocyanin biosynthesis and degradation in the ‘Hong yang’ kiwifruit[D]. Chengdu: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
[5] | SANCHEZ-BALLESTA M T, ROMERO I, JIMÉNEZ J B, et al. Involvement of the phenylpropanoid pathway in the response of table grapes to low temperature and high CO2 levels[J]. Postharvest Biology and Technology, 2007, 46(1): 29-35. |
[6] | ZHANG X A, WANG W X, LI J P, et al. Analysis of anthocyanin accumulation and related gene expression during fig fruit development[J]. Plant Molecular Biology Reporter, 2023, 41(2): 317-332. |
[7] | WEI Z W, YANG H Y, SHI J, et al. Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosm)[J]. Cells, 2023, 12(9): 1225. |
[8] | LI D, ZHANG X C, XU Y Q, et al. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit[J]. Food Chemistry, 2019, 289: 112-120. |
[9] | FANG F, ZHANG Z Q, ZHANG X L, et al. Reduction in activity/gene expression of anthocyanin degradation enzymes in lychee pericarp is responsible for the color protection of the fruit by heat and acid treatment[J]. Journal of Integrative Agriculture, 2013, 12(9): 1694-1702. |
[10] | HUTABARAT R P, XIAO Y D, WU H, et al. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing[J]. Journal of Food Quality, 2019, 2019: 6806790. |
[11] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
[12] | 黄欣莉, 韩延超, 陈杭君, 等. 1-甲基环丙烯通过调控香菇能量代谢抑制其采后褐变[J]. 食品科学, 2022, 43(13): 192-198. |
HUANG X L, HAN Y C, CHEN H J, et al. 1-methylcyclopropene inhibits postharvest browning of Lentinus edodes by regulating energy metabolism[J]. Food Science, 2022, 43(13): 192-198. (in Chinese) | |
[13] | 严锐, 韩延超, 吴伟杰, 等. 水杨酸处理对鲜莲采后品质及抗氧化酶活性的影响[J]. 中国食品学报, 2022, 22(3): 235-245. |
YAN R, HAN Y C, WU W J, et al. Effect of salicylic acid treatment on the postharvest quality and antioxidant enzyme activity of fresh lotus[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 235-245. (in Chinese) | |
[14] | 韩延超. 组蛋白去乙酰化酶参与ERF转录因子调控的香蕉果实成熟机制研究[D]. 广州: 华南农业大学, 2016. |
HAN Y C. Histone deacetylases are involved in ERF-mediated transcriptional regulation of banana fruit ripening[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract) | |
[15] | FU C C, YU Z L, HAN C, et al. Ethylene induced CpNAC4 participates in ethylene synthesis by regulating CpACS2 and CpACO4 during papaya fruit ripening[J]. Postharvest Biology and Technology, 2023, 206: 112582. |
[16] | LI D N, MENG X J, LI B. Profiling of anthocyanins from blueberries produced in China using HPLC-DAD-MS and exploratory analysis by principal component analysis[J]. Journal of Food Composition and Analysis, 2016, 47: 1-7. |
[17] | 王惠聪, 黄旭明, 胡桂兵, 等. 荔枝果皮花青苷合成与相关酶的关系研究[J]. 中国农业科学, 2004, 37(12): 2028-2032. |
WANG H C, HUANG X M, HU G B, et al. Studies on the relationship between anthocyanin biosynthesis and related enzymes in litchi pericarp[J]. Scientia Agricultura Sinica, 2004, 37(12): 2028-2032. (in Chinese) | |
[18] | 黎欢欢. 红阳猕猴桃果肉花色苷积累规律和机制的研究[D]. 成都: 四川农业大学, 2015. |
LI H H. Study on the accumulation and the mechanism of anthocyanin of fruit in ‘HongYang’ kiwifruit[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese with English abstract) | |
[19] | FENG S Q, CHEN X S, ZHANG C Y, et al. Relationship between anthocyanin biosynthesis and related enzymes activity in Pyrus pyrifolia mantianhong and its bud sports aoguan[J]. Agricultural Sciences in China, 2008, 7(11): 1318-1323. |
[20] | LISTER C E, LANCASTER J E, WALKER J R L. Phenylalanine ammonia-lyase (PAL) activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars[J]. Journal of the American Society for Horticultural Science, 1996, 121(2): 281-285. |
[21] | 刘晓静. ‘国光’苹果红色芽变果实品质评价及着色机理的初步研究[D]. 泰安: 山东农业大学, 2009. |
LIU X J. Quality evaluation of red bud mutation of ‘Ralls’ apple and preliminary study on its physiological mechanism of red pigment development[D]. Taian: Shandong Agricultural University, 2009. (in Chinese with English abstract) | |
[22] | 王庆菊, 李晓磊, 王磊, 等. 紫叶稠李叶片花色苷及其合成相关酶动态[J]. 林业科学, 2008, 44(3): 45-49. |
WANG Q J, LI X L, WANG L, et al. Dynamic changes of anthocyanin and the relevant biosynthesis enzymes in Padus virginiana ‘schubert’ leaves[J]. Scientia Silvae Sinicae, 2008, 44(3): 45-49. (in Chinese) | |
[23] | JIANG Y M. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning[J]. Journal of the Science of Food and Agriculture, 2000, 80(3): 305-310. |
[24] | ZHANG Z Q, PANG X Q, JI Z L, et al. Role of anthocyanin degradation in litchi pericarp browning[J]. Food Chemistry, 2001, 75(2): 217-221. |
[25] | GAO L X, YANG H X, LIU H F, et al. Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii[J]. Frontiers in Plant Science, 2016, 6: 1205. |
[26] | 黄宁, 刘朋, 霍俊伟, 等. 蓝果忍冬果实花青素含量及合成相关基因表达分析[J]. 南方农业学报, 2017, 48(7): 1139-1147. |
HUANG N, LIU P, HUO J W, et al. Anthocyanin content and expression of synthesis-related genes in Lonicera caerulea L[J]. Journal of Southern Agriculture, 2017, 48(7): 1139-1147. (in Chinese with English abstract) | |
[27] | LI X Y, SUN H Y, PEI J B, et al. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants[J]. Gene, 2012, 511(1): 54-61. |
[28] | GONZALEZ D H. Plant transcription factors[M]. Academic Press, 2016: 3-11. |
[29] | YANG Y, CUI B H, TAN Z W, et al. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum[J]. BMC Genomics, 2018, 19(1): 930. |
[30] | LIU H N, SU J, ZHU Y F, et al. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter[J]. Horticulture Research, 2019, 6: 134. |
[31] | OREN-SHAMIR M. Does anthocyanin degradation play a significant role in determining pigment concentration in plants?[J]. Plant Science, 2009, 177(4): 310-316. |
[1] | SONG Peng, LI Lixiang, JIANG Houlong, WANG Ru, LI Hui, ZHAO Pengyu, ZHANG Jun, QIN Pingwei, REN Jiangbo, CHEN Qingming. Effect of application of Brevibacillus laterosporus on potassium content of cured tobacco leaves and physiological characteristics of tobacco plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 494-502. |
[2] | CAI Shiyi, YU Huifang, WANG Jiansheng, ZHU Biao, SHEN Yusen, GU Honghui, SHENG Xiaoguang. Major gene plus polygene inheritance analysis of curd sitting height in cauliflower [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 527-533. |
[3] | PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253. |
[4] | GUO Weina, TAO Jing, HE Mengting, WANG Ziwei, MA Baihe, ZHAO Lei. Isolation, identification, antimicrobial susceptibility test and virulence genes detection of Salmonella typhimurium from chicken [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 284-294. |
[5] | ZHANG Ting, WANG Xueyan, GUO Qinwei, LI Chaosen, LIU Huiqin, XIANG Xiaomin, WEI Jing, ZHAO Dongfeng, WAN Hongjian. Genetic diversity of pepper germplasm resources based on agronomic traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. |
[6] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
[7] | YANG Yang, YUAN Lu, LIU Bin, WANG Tingjin, ZHANG Aijun, LIU Ke, LI Xuqing, DAO Liyun, YUAN Xin, CHEN Liping. Research progress on horizontal gene transfer between plants: a new way of gene exchange and its agricultural utilization potential [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 455-469. |
[8] | YANG Tianwen, WANG Jing, LI Jiong, XU Binqi, CHENG Jiaowen, HONG Yu, CAO Yi, CUI Junjie. Genetic diversity analysis and fingerprint construction of Dading bitter gourd germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 103-114. |
[9] | WU Qian, TANG Ziyi, TIAN Shengye, HE Haiye, PAN Weiwei, WANG Junfeng, BAO Honghua, ZHANG Huijuan, JIANG Ming. Genetic diversity of Rhododendron huadingense based on SARP molecular marker [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 127-133. |
[10] | LENG Yifeng, LUO Fan, CHEN Congshun, DING Xin, CAI Guangze. Phylogenetic relationship and genetic differentiation of maize landraces revealed by genome-wide SNP developed by genotyping-by-sequencing in Daliangshan Mountain area, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 32-47. |
[11] | YANG Cunming, LIU Jing, ZHANG Menghua, ZHANG Xiaoxue, LIU Guifen, HE Junmin, MAO Jingyi, LI Xue, TANG Li, ZHANG Wenjing, PAN Linxiang, TIAN Kechuan, HUANG Xixia. Estimation of genetic parameters of body size and body weight at different growth stages of Luzhong mutton sheep [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 48-57. |
[12] | LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032. |
[13] | ZHANG Xiaoli, ZHU Linglong, LI Fuzhen, TANG Xiumei, XIA Youlin, YOU Yu, ZHONG Ruichun. Evaluation and analysis of agronomic and quality traits of 115 peanut germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2033-2044. |
[14] | YUAN Xiaochun, WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai. Identification and analysis of alternative splicing events related to sheep hair follicle development based on RNA sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2056-2067. |
[15] | LI Biyuan, YUE Zhichen, ZHAO Yanting, LEI Juanli, HU Qizan, TAO Peng. Identification and functional analysis of the BrLCYB gene of lycopene β-cyclase from Chinese cabbage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2090-2096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||