Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (2): 247-253.DOI: 10.3969/j.issn.1004-1524.20230104
• Animal Science • Previous Articles Next Articles
PENG Jiacheng1(), WU Yue1, XU Jiehao2, XIA Meiwen1, QI Tianpeng1, XU Haisheng1,3,*(
)
Received:
2023-02-06
Online:
2024-02-25
Published:
2024-03-05
CLC Number:
PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230104
引物 Primer | 引物序列 Primer sequence(5'→3') | 用途 Purpose |
---|---|---|
MnPXN-3'-F1 | CAATGCCAGCAGCCTCCAGACAC | RACE |
MnPXN-3'-R1 | AAGCCGTCCTCGCCGAAGGTGTT | RACE |
MnPXN-3'-F2 | TGGACGAGTTGAACAGCGTTGACA | RACE |
MnPXN-3'-R2 | TCCCTTCTGGGTCGTCGTGATGC | RACE |
MnPXN-3'-F3 | GAATGACCTGAGTGGCACCTGAC | RACE |
MnPXN-3'-R3 | TGCCGTGAAGAATGACATAGAAT | RACE |
MnPXN-3'-F4 | GAGGAAGTGCGGACGGAGCAGAGGT | RACE |
MnPXN-3'-R4 | GATCTCGATGTGCCGTGAAGAAT | RACE |
MnPXN-3'-F5 | GTTATGTCATTGGCTCAAGAGGA | RACE |
MnPXN-3'-R5 | GTGTATTTATACTGTATGCCTAACC | RACE |
MnPXN-3'-F6 | GCTACAAGAGGCTCCCAACTACAT | RACE |
MnPXN-3'-R6 | CAGGAGGTAAAGACTACTGATGT | RACE |
MnPXN-3'-F7 | AAAAGGTTTGGTAAATGTCCAGGTT | RACE |
MnPXN-3'-RUPM | CTAATACGACTCACTATAGGGC | RACE |
MnPXN-5'-F1 | TTGTTCATCCAGGAGGTAAAGAC | RACE |
MnPXN-5'-R1 | GCCAATAAGGCATCAATGGTATCCTG | RACE |
MnPXN-5'-F2 | GAAGTTTGGCAGTATCTTATGGA | RACE |
MnPXN-5'-R2 | TTGTGAATGAGGGTGGCGTTTGG | RACE |
MnPXN-5'-F3 | CAATAAGGCATCAATGGTATCCTGCA | RACE |
MnPXN-5'-R3 | AATTTCAAAAATCTAATT | RACE |
MnPXN-5'-FUPM | CTAATACGACTCACTATAGGGCAA GCAGTGGTATCAACGCAGAGT | RACE |
MnPXN-5'-R4 | GGGCATCATTCTTTGTCTTTCTT | RACE |
MnPXN-RT-F | CCCCATCTTGGATAAATGCGTGAC | qRT-PCR |
MnPXN-RT-R | AAGCCGTCCTCGCCGAAGGTGTTGC | qRT-PCR |
β-actin-F | GTGCCCATCTACGAGGGTTA | qRT-PCR |
β-actin-R | CGTCAGGGAGCTCGTAAGAC | qRT-PCR |
Table 1 Primers for gene clone
引物 Primer | 引物序列 Primer sequence(5'→3') | 用途 Purpose |
---|---|---|
MnPXN-3'-F1 | CAATGCCAGCAGCCTCCAGACAC | RACE |
MnPXN-3'-R1 | AAGCCGTCCTCGCCGAAGGTGTT | RACE |
MnPXN-3'-F2 | TGGACGAGTTGAACAGCGTTGACA | RACE |
MnPXN-3'-R2 | TCCCTTCTGGGTCGTCGTGATGC | RACE |
MnPXN-3'-F3 | GAATGACCTGAGTGGCACCTGAC | RACE |
MnPXN-3'-R3 | TGCCGTGAAGAATGACATAGAAT | RACE |
MnPXN-3'-F4 | GAGGAAGTGCGGACGGAGCAGAGGT | RACE |
MnPXN-3'-R4 | GATCTCGATGTGCCGTGAAGAAT | RACE |
MnPXN-3'-F5 | GTTATGTCATTGGCTCAAGAGGA | RACE |
MnPXN-3'-R5 | GTGTATTTATACTGTATGCCTAACC | RACE |
MnPXN-3'-F6 | GCTACAAGAGGCTCCCAACTACAT | RACE |
MnPXN-3'-R6 | CAGGAGGTAAAGACTACTGATGT | RACE |
MnPXN-3'-F7 | AAAAGGTTTGGTAAATGTCCAGGTT | RACE |
MnPXN-3'-RUPM | CTAATACGACTCACTATAGGGC | RACE |
MnPXN-5'-F1 | TTGTTCATCCAGGAGGTAAAGAC | RACE |
MnPXN-5'-R1 | GCCAATAAGGCATCAATGGTATCCTG | RACE |
MnPXN-5'-F2 | GAAGTTTGGCAGTATCTTATGGA | RACE |
MnPXN-5'-R2 | TTGTGAATGAGGGTGGCGTTTGG | RACE |
MnPXN-5'-F3 | CAATAAGGCATCAATGGTATCCTGCA | RACE |
MnPXN-5'-R3 | AATTTCAAAAATCTAATT | RACE |
MnPXN-5'-FUPM | CTAATACGACTCACTATAGGGCAA GCAGTGGTATCAACGCAGAGT | RACE |
MnPXN-5'-R4 | GGGCATCATTCTTTGTCTTTCTT | RACE |
MnPXN-RT-F | CCCCATCTTGGATAAATGCGTGAC | qRT-PCR |
MnPXN-RT-R | AAGCCGTCCTCGCCGAAGGTGTTGC | qRT-PCR |
β-actin-F | GTGCCCATCTACGAGGGTTA | qRT-PCR |
β-actin-R | CGTCAGGGAGCTCGTAAGAC | qRT-PCR |
Fig.1 Multiple amino acid sequence alignments of PXN from different species The red box in the figure is the 3 LIM domains shared by 6 species, and the black box is the 4th LIM domain possessed by Homo sapiens, mouse, zebrafish and Litopenaeus vannamei.
Fig.3 Expression level of MnPXN in different tissues of Macrobrachium nipponense “*” indicates that the expression level of this group is significantly different from that of the heart group (P<0.05); “**” indicates significant difference at 0.01 level; “***” indicates significant difference at 0.001 level.
Fig.4 The relative expression level of MnPXN mRNA in hepatopancreas of Macrobrachium nipponense under different concentration of CdCl2 after 24 h and exposed to CdCl2 for different time “*” indicates significant difference at 0.05 level; “**” indicates significant difference at 0.01 level; “***” indicates significant difference at 0.001 level. The same as below.
[1] | LÓPEZ-COLOMÉ A M, LEE-RIVERA I, BENAVIDES-HIDALGO R, et al. Paxillin: a crossroad in pathological cell migration[J]. Journal of Hematology & Oncology, 2017, 10(1): 50. |
[2] | YANG W J, ZHONG J, YU J G, et al. The structure and functions of paxillin and its roles in neovascularization[J]. European Review for Medical and Pharmacological Sciences, 2017, 21(8): 1768-1773. |
[3] | TURNER C E. Molecules in focus Paxillin[J]. The International Journal of Biochemistry & Cell Biology, 1998, 30(9): 955-959. |
[4] | DEAKIN N O, TURNER C E. Paxillin comes of age[J]. Journal of Cell Science, 2008, 121(Pt 15): 2435-2444. |
[5] | ZHOU J X, LIU T E, XU H J, et al. LncRNA FIRRE promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the expression of PXN through interacting with MBNL3[J]. Biochemical and Biophysical Research Communications, 2022, 625: 188-195. |
[6] | SALMAN S. The invasion of Macrobrachium nipponense(De Haan, 1849) (Caridea: Palaemonidae) into the Southern Iraqi Marshes[J]. Aquatic Invasions, 2006, 1(3): 109-115. |
[7] | KRIVOHLAVEK A, KUHARIĆ Ž, MARJANOVIĆ ČERMAK A M, et al. Assessment of intracellular accumulation of cadmium and thallium[J]. Journal of Pharmacological and Toxicological Methods, 2021, 110: 107087. |
[8] | NAIKOO M I, RAGHIB F, DAR M I, et al. Uptake, accumulation and elimination of cadmium in a soil-Faba bean (Vicia faba)-Aphid (Aphis fabae)-Ladybird (Coccinella transversalis) food chain[J]. Chemosphere, 2021, 279: 130522. |
[9] | LIU Y N, CHEN Q Q, LI Y Q, et al. Toxic effects of cadmium on fish[J]. Toxics, 2022, 10(10): 622. |
[10] | ZHANG H, REYNOLDS M. Cadmium exposure in living organisms: a short review[J]. The Science of the Total Environment, 2019, 678: 761-767. |
[11] | BOSCH A C, O’NEILL B, SIGGE G O, et al. Heavy metals in marine fish meat and consumer health: a review[J]. Journal of the Science of Food and Agriculture, 2016, 96(1): 32-48. |
[12] | KIM M S, YOO N J, LEE S H. Absence of paxillin gene mutation in lung cancer and other common solid cancers[J]. Tumori, 2011, 97(2): 211-213. |
[13] | MAZAKI Y, UCHIDA H, HINO O, et al. Paxillin isoforms in mouse: lack of the gamma isoform and developmentally specific beta isoform expression[J]. The Journal of Biological Chemistry, 1998, 273(35): 22435-22441. |
[14] | CRAWFORD B D, HENRY C A, CLASON T A, et al. Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis[J]. Molecular Biology of the Cell, 2003, 14(8): 3065-3081. |
[15] | GAO J, HUANG M, LAI J J, et al. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin[J]. Journal of Cell Science, 2017, 130(21): 3764-3775. |
[16] | 刘长锁, 陈乃宏. 桩蛋白的结构与功能[J]. 生命的化学, 2005, 25(3): 208-210. |
LIU C S, CHEN N H. Structure and function of pilin[J]. Chemistry of Life, 2005, 25(3): 208-210. (in Chinese) | |
[17] | 吴迪, 王梦圆, 史永富, 等. 镉在甲壳类水生生物中的蓄积现状及赋存形态研究进展[J]. 核农学报, 2023, 37(1): 128-139. |
WU D, WANG M Y, SHI Y F, et al. Research progress of cadmium accumulation and speciation in crustacean aquatic organisms[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(1): 128-139. (in Chinese with English abstract) | |
[18] | SHEN X D, TANG Z Q, BAI Y, et al. Astragalus polysaccharide protects against cadmium-induced autophagy injury through reactive oxygen species (ROS) pathway in chicken embryo fibroblast[J]. Biological Trace Element Research, 2022, 200(1): 318-329. |
[19] | WEI Z X, SHAIKH Z A. Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and β-catenin signaling[J]. Toxicology and Applied Pharmacology, 2017, 328: 70-80. |
[20] | CHOONG G, LIU Y, TEMPLETON D M. Interplay of calcium and cadmium in mediating cadmium toxicity[J]. Chemico-Biological Interactions, 2014, 211: 54-65. |
[1] | TANG Jinyu, QIN Baoli, YE Jianyong, DAI Yangxin. Effects of stocking modes on growth traits and muscle nutritional composition of Macrobrachium nipponense [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 254-263. |
[2] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
[3] | LIANG Feishuang, LIANG Huafang, Huang Jiayu, WANG Panmei, WEN Chongqing. Effect of RNA interference with PhCatC1/2 gene on expression of related immune genes in Panulirus homarus [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1037-1047. |
[4] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
[5] | LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542. |
[6] | KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610. |
[7] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
[8] | FAN Liying, FAN Tingting, TONG Zongjun, LIANG Liyun, ZHAO Zhiyong, CHEN Hui, ZHOU Changyan, ZHAO Xiaoyan. Effects on accumulation of cadmium and antioxidant system of different Morchella spp. under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2321-2331. |
[9] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[10] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[11] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[12] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[13] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[14] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[15] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||